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Conditional Neural Expert Processes for Learning
Movement Primitives from Demonstration

Yigit YILDIRIM and Emre UGUR

Abstract—Learning from Demonstration (LfD) is a widely used
technique for skill acquisition in robotics. However, demonstra-
tions of the same skill may exhibit significant variances, or
learning systems may attempt to acquire different means of the
same skill simultaneously, making it challenging to encode these
motions into movement primitives. To address these challenges,
we propose an LfD framework, namely the Conditional Neural
Expert Processes (CNEP), that learns to assign demonstrations
from different modes to distinct expert networks utilizing the
inherent information within the latent space to match experts
with the encoded representations. CNEP does not require su-
pervision on which mode the trajectories belong to. We compare
the performance of CNEP against widely used and powerful LfD
methods such as Gaussian Mixture Models, Probabilistic Move-
ment Primitives, and Stable Movement Primitives and show that
our method outperforms these baselines on multimodal trajectory
datasets. The results reveal enhanced modeling performance for
movement primitives, leading to the synthesis of trajectories
that more accurately reflect those demonstrated by experts,
particularly when the skill demonstrations include intersection
points from various trajectories. We evaluated the CNEP model
on two real-robot tasks, namely obstacle avoidance and pick-
and-place tasks, that require the robot to learn multi-modal
motion trajectories and execute the correct primitives given
target environment conditions. We also showed that our system
is capable of on-the-fly adaptation to environmental changes
via an online conditioning mechanism. Lastly, we believe that
CNEP offers improved explainability and interpretability by
autonomously finding discrete behavior primitives and providing
probability values about its expert selection decisions.

Index Terms—Learning from Demonstration, Deep Learning
Methods

I. INTRODUCTION

The capability of robots to comprehend and respond to
dynamic environments is vital for their integration across
various contexts. Specifically, most real-world tasks require
the robots to model and construct spatiotemporal sensorimotor
trajectories. Early applications involved manually recording
the sensorimotor information generated by a demonstrator on
a teleoperated robot and, later, autonomously following them
on the robot [1]. A skill was then represented by a series
of primitive action segments selected according to simple
conditional rules. These manually recorded controllers often
fail outside the controlled environments due to the inherent
characteristics of real-world environments as explained in [2].

Learning from Demonstration (LfD) is a widely adopted
procedure in robotics that enables learning controllers to
acquire new skills by observing an expert [3], [4]. For this
purpose, elaborate demonstrations of target skills are required
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in LfD. On the other hand, the set of expert demonstrations for
a particular real-world skill may contain significant variances,
or there might be multiple ways to achieve the same skill.
These variances reflect the stochastic nature of the expert
demonstrations, which poses the challenge of handling quan-
titatively and qualitatively different demonstrations for LfD-
based skill-acquisition procedures.

Assume a human is given the task of teaching a robot a
diverse set of skills, all initiated in the same environment setup.
Given a large number of demonstrations without any further
supervision about the type of motion, it is challenging to train
a single system to handle such diversity. Instead, as Schaal et
al. stated, “the existence of movement primitives seems, so far,
the only possibility how one could conceive that autonomous
systems can cope with the complexity of motor control and
motor learning” [5]. In this paper, we aim to develop a
system that autonomously discovers the movement primitives
while learning to generate the corresponding sensorimotor
trajectories. For this, we introduce the Conditional Neural
Expert Processes (CNEP) model, a generic and monolithic LfD
framework to teach robots the necessary controllers to model
and synthesize complex, multimodal sensorimotor trajectories.
In previous approaches, such as [5], [6], [7], [8], the multi-
modality aspect of target skills was not explicitly addressed
as these approaches attempted to represent different modes
with the same mechanism, leading to a seamless interpolation
inside the demonstration space, which may lead to suboptimal
behavior, as shown in [9]. On the contrary, our CNEP is
designed to model different modes in the demonstrations with
different experts and generate the required motion trajectory by
automatically selecting the corresponding expert. Our model
is built on top of Conditional Neural Movement Primitives
(CNMP) [8], which was shown to form robust representations
to model complex motion trajectories from a few data points.
CNMPs have an encoder-decoder structure that allows them
to generate motion trajectories given a set of conditioning
(observation) points. CNEP uses multiple decoders (experts)
- instead of a single one - that are responsible for different
modes in the given trajectories. Given the conditioning points
and the output of the encoder network, a novel gating mecha-
nism assigns probabilities to the experts, and the decoder with
the highest probability is used to generate the motion trajectory
from the encoded conditioning points. Besides the architectural
contribution that includes the gating mechanism and multiple
experts, we propose a novel loss function to ensure that all
the experts are evenly utilized and an expert, when assigned,
is selected with high probability.

We evaluated our system in different tasks that require
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learning different sets of movement trajectories, including arm
and gripper trajectories, from a real robot system. We showed
that CNEP outperforms the baseline models [8], [10], [11],
[12] when the system is required to generate trajectories from
common points of several demonstrations of increasing num-
ber of modes, and when generalizing into unseen conditioning
points.

II. RELATED WORK

Equipping robots with the desired skills has been the
driving force in robotics research. In initial studies, controllers
with precise mathematical representations were used. These
representations were formed using the physics-based dynamic
models of the environment and the kinematic models of the
agents [13]. Although accurate in controlled settings and
computationally less intense, the applicability of the precise
models was limited in realistic scenarios. This is mainly due
to their constrained flexibility in the kinodynamic space of the
system, preventing the generalization of acquired skills into
novel conditions.

Movement Primitives (MP) formalism offers a compact and
modular representation to create more flexible controllers. For
example, in DMPs [5], expert demonstration of a complex skill
is encoded with a system of differential equations in the form
of MPs. DMPs can be queried upon modeling to generate
motion trajectories from start to end. Also, when integrated
with closed-loop feedback, DMPs are proven suitable for real-
time control as they adapt to changes and perturbations in
real-time, offering robust performance in many applications
[14]. However, only a single trajectory can be encoded by the
classical DMP formulation, indicating that variabilities inside
demonstrations are not considered. CNEPs, on the other hand,
can encode distributions of trajectories.

Probabilistic approaches have been proposed to address the
abovementioned requirements by offering flexible and robust
modeling mechanisms. In this respect, Gaussian Mixture Mod-
els together with Gaussian Mixture Regression (GMM-GMR)
and Hidden Markov Models (HMM) have been used in several
studies [15], [16], [17] to capture the variability of the task
by learning the distributions of the demonstration data. The
complexity of training and inference in HMMs increases as
the dimensionality of the demonstrations increases, whereas
variants of GMMs work well with high-dimensional data
[18]. Nonetheless, when the demonstration data of the task is
sampled from a multimodal distribution, GMMs fail to select
one of the modes. In contrast, state-transition probabilities
of HMMs encode this information, enabling the synthesis of
expert-like trajectories [19]. The proposed CNEP addresses
both of these issues. It utilizes multiple expert networks to
handle multimodal data and can work with high-dimensional
raw data coming directly from the sensors.

As stated in [20], [21], the uncertainty in real-world tasks
has been explicitly addressed using Gaussian Processes (GPs).
As a result, the computational efficiency of learning adaptable
and robust robotic controllers is improved to enable control
in real-world tasks. Pure GP approaches are known to work
well in Euclidean spaces. However, when the demonstration

data displays non-Euclidean characteristics, such as rotation of
robotic joints, further adjustments are required for GP methods
[22]. This is not the case for CNEP as illustrated with the
real robot tests where the complete trajectories in the non-
Euclidean joint space are used as demonstrations.

Addressing the in-task variability, Probabilistic Movement
Primitives (ProMP) have been proposed to encode a distribu-
tion of trajectories [11]. In [6], ProMPs were shown to provide
improved generalization capabilities, enabling generated tra-
jectories to be adapted so that they could pass through desired
via points. However, ProMPs are composed of linear-Gaussian
models that are limited to unimodal distributions and cannot
represent multimodal datasets. Additionally, ProMPs cannot
be efficiently trained or queried with high dimensional input.

As a deep LfD framework, Conditional Neural Movement
Primitives (CNMP) is developed based on Conditional Neural
Processes (CNP) [7], also aiming to handle high-dimensional
sensorimotor data. CNMP can be used to learn movement
primitives using sensorimotor data and construct trajectories
that can be conditioned on real-time sensory data to enable
real-time responses. It has been successfully applied to com-
plex trajectory data across numerous studies and domains, such
as [23], [24]. However, only a single query network is used
in CNMP to decode different demonstrations of a movement
primitive. As a result, trajectories are formed by interpolating
between different modes of the same skill, which may lead
to suboptimal results where the demonstration trajectories are
multimodal or intersecting.

Recently, the Stable Movement Primitives (Stable MP),
[12], is proposed to learn movement primitives, potentially
belonging to multiple skills, using the same neural mechanism.
It offers the advantage of guaranteed precision at conditioning
points. However, it requires supervision about the type of
skill it learns or generates. Additionally, the system puts
limitations on the conditioning mechanism. Contrarily, CNEP
discovers trajectory types in an unsupervised manner and can
be conditioned from any via point.

III. METHOD

A. Problem Formulation

The skill-acquisition problem can be formulated as finding
a sequence of motion commands that produce the desired
movement [25]. Formally, the LfD system is expected to learn
a function τ = f(t;X), where X denotes specific criteria,
such as the starting point at t = 0 or the destination at any
time t, using N expert demonstrations, D = {τ1, τ2, . . . , τN}.
Despite the multimodality of the target skill, a resource-
efficient solution with few demonstrations is also demanded
to promote the applicability of the proposed approach in
real-world settings where it is infeasible to provide so many
demonstrations.

In this context, sensorimotor functions (SM(t)) are utilized
to refer to the temporal mapping of sensory inputs and motor
outputs of a robot at time t. Two important notions are
encapsulated in the SM(t) formalism: (1) how a robot senses its
environment through sensors and (2) how it responds through
actuators at any given moment. The perspective of representing
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Fig. 1. The CNEP model contains an Encoder, a Gate, and multiple Query Networks called experts. In this example, n=3 observation points (shown with
•) and m=1 target timepoints (shown with •) are randomly sampled on the input trajectory. The latent representation, the mean of n observation encodings,
is used by: (1) the Gate Network to find the responsible expert and (2) expert networks to generate their predictions as normal distributions at the target
timepoint. Refer to Section III-C1 for details.

complex skills as SM(t) trajectories transforms skill-acquisition
efforts into trajectory modeling and generation problems. A
trajectory is formally defined as a temporal function, τ = τ(t)
following [26]. Throughout this study, each trajectory τ is
represented as an ordered list of sensorimotor values: τ =
{SM(t1), SM(t2), . . . , SM(tT )}.

In the following section, after introducing the baseline
(CNMP) method, we provide details of our proposed method
(CNEP). As LfD frameworks, both are used to encode a
set of trajectories from expert demonstrations. They take a
set of observation (conditioning) points, in the form of (t,
SM(t)) tuples from a trajectory, and are expected to output the
SM(tq) value of any target timepoint, tq . In practice, given
varying observation points, the entire trajectory is generated
by querying the system for all time points from t1 to tT .

B. Background: CNMP
CNMP, introduced in [8], contains an Encoder and a Query

Network. At the training time, a trajectory τi is first sampled
from demonstrations, D. n randomly sampled observation
points from this trajectory are passed through the Encoder
Network to generate corresponding latent representations. An
averaging operation is applied to obtain a compact represen-
tation of the (n) input observations in the latent space. The
average representation is then concatenated with m random
target timepoints and passed through the Query Network
to output the distributions that describe the sensorimotor
responses of the system at corresponding target timepoints.
Here, n and m are random numbers, where 1 ≤ n ≤ nmax and
1 ≤ m ≤ mmax. nmax and nmax are hyperparameters whose
values are set empirically. The output is a multivariate normal
distribution with parameters (µq,Σq). The loss is calculated
as the negative log-likelihood of the ground-truth value under
the predicted distribution as follows:

L = − log P ( SM(tq) | N (µq, softplus(Σq) ) ). (1)

This loss is backpropagated, updating the weights of both the
Encoder and the Query networks. More details can be found
in [8].

C. Proposed Approach: CNEP

1) Architecture Overview : The proposed architecture and
the workflow are illustrated in Fig. 1. Similar to the CNMP,
the input to the system is composed of n observations, which
are passed through the Encoder Network to generate the
latent representation. The latent representation is fed into our
novel Gate Network to produce the gate probabilities for all
experts. Simultaneously, they are concatenated with m target
timepoints and are passed through all experts to generate
SM predictions at target timepoints. During training, the Gate
Network’s output is combined with the experts’ outputs to
compute the overall loss. After training, when the system is
asked to generate a response for a target, only the prediction
of the expert with the highest gate probability is outputted.
An example case is shown in Fig. 1, where after producing
the latent representation for n=3 observation points, the gating
mechanism outputs a relatively high probability for the second
expert, appointing it as the responsible expert for this query.
Therefore, its response for m=1 target timepoint is selected as
the output of the entire system. The system is trained end-to-
end, as detailed in the next section.

2) Training Procedure : The training phase of the CNEP
model is depicted in Fig. 2. From a randomly selected tra-
jectory, τi, n observation points are randomly sampled to
form (t, SM(t)) tuples and given to the Encoder Network.
A compact representation estimate for τi, ri, is obtained
by averaging the output of the Encoder Network for the n
conditioning points. In Fig. 2, parallel processing of a batch
of trajectories is shown.

a) Calculating Gate Probabilities: The gate probability
is the probability that the set of conditioning points and their
underlying trajectory will be generated by the corresponding
expert, as predicted by our system. For each expert e, the gate
probability pi,e is calculated by the Gate Network, which takes
as input the average latent activation (ri) of the corresponding
conditioning points and passes it through a linear layer fol-
lowed by the Softmax function. The number of experts, d, is
a hyperparameter in our model.



4

Fig. 2. Initially, observation points from the input trajectory are mapped to the latent space by the Encoder Network. The averaged representations (r) are
(1) fed into the Gate Network and (2) concatenated with target points (rq) and fed into the Query Networks. While the candidate predictions are outputted
by all Query Networks, the probabilities for each trajectory-expert pair (p) are generated by the Gate Network. These probabilities are used in calculating the
values of loss components as explained in Section III-C2.

b) The Reconstruction Loss: Each expert predicts a nor-
mal distribution for the SM values at target timepoints, and
a reconstruction loss is calculated using the ground-truth SM
values. For this, m target timepoints (tq) are randomly sam-
pled, where m is set to 1 in Fig. 2 for simplicity. An (ri, tq)
tuple is passed through all experts (Qes) to generate their
predictions. The negative log-likelihood of the actual SM(tq)
under predicted distribution is computed as the reconstruction
loss of the corresponding expert as follows:

Le = − log P ( SM(tq) | N (µe, softplus(Σe) ) )

where µe and Σe are the outputs of the Query Network, Qe.
Next, the combined reconstruction loss for the trajectory τi

is calculated by taking the weighted sum of Les of all experts:

Li
rec =

1

d

d∑
e=1

Le × pi,e

where pi,e is the probability of expert e for the latent repre-
sentation ri. For a batch of trajectories (Fig. 2), the weighted
reconstruction loss Lrec is the mean Li

rec, where 1 ≤ i ≤ b,
and b is the batch size.

c) Expert Assignment Losses: We would like our system
to avoid selecting the same expert for all possible modes. For
this purpose, the entropy of the expert activation frequencies
over a batch of training trajectories should be maximized.
We use batch entropy (Lbatch) to enforce this constraint. In
the meantime, we would like the system to attribute a high
probability when assigning an (ri, tq) tuple to one of the
experts. For this, the entropy of the gate probabilities, pi,
should be minimized. We use individual entropy (Lind) to
enforce this constraint.

Formally, Lbatch ∈ R is calculated as follows:

Lbatch = −
d∑

e=1

(
1

b

b∑
i=1

pi,e

)
log

(
1

b

b∑
i=1

pi,e

)
where, again, b is batch size, and d is the number of experts.

Subsequently, Lind ∈ R is computed as follows:

Lind =
1

b

b∑
i=1

(
−

d∑
e=1

pi,e log(pi,e)

)

The entire system is trained in an end-to-end manner where
the parameters of the Encoder, the Gate, and the Query
Networks are trained simultaneously in a supervised way.
The overall loss function is a linear combination of the
abovementioned three components: (1) the weighted recon-
struction loss, (2) batch-wise expert activation loss, the batch
entropy, and 3) trajectory-wise expert selection probability, the
individual entropy. The dynamic nature of expert selection
necessitates careful handling during training to achieve the
right balance between expert adaptation and overall system
stability. Essentially, as the model attempts to decrease the
reconstruction loss, it stimulates experts to make accurate
predictions. Moreover, while the model attempts to increase
batch entropy, it promotes expert specialization by preventing
the overutilization of any expert. Lastly, the individual entropy
component of the loss indirectly implies the confidence of
latent representation-expert matching. As the model attempts
to decrease this value, it contributes to the specialization of
experts by assigning similar representations to the same expert.
As a result, the following overall loss function is used:

Ltotal = α1 × Lrec + α2 × Lbatch + α3 × Lind, (2)

where weighting coefficients of these components, α1, α2, and
α3, are found empirically by the grid search technique using
a specific library, called Weights & Biases, [27].

3) PID Controller : To execute learned skills on the robot,
a PID controller is appended to the end of our system,
ensuring that synthesized trajectories pass through specified
observation points. The predicted SM trajectories are fed into
this controller prior to the execution. The control signal u(t)
for each timestep is calculated using the PID formula:

u(t) = Kp · e(t) +Ki ·
∫

e(t) dt+Kd ·
d

dt
e(t)
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(a) (b)

Fig. 3. (a) SM trajectories and observation points used in the comparison. (b)
Conditioned from different points. While CNMP might produce an average
response, CNEP successfully generates the target trajectory.

where e(t) is the error vector at time t, and Kp, Ki, and Kd are
the proportional, integral, and derivative gains, respectively,
which define the controller’s behavior.

The error e(t) is the difference between the current point
and the conditioning point. A decay mechanism of certain
timesteps is incorporated into the error calculation. This en-
sures that the corrections diminish, allowing the trajectory to
converge smoothly toward the desired path.

IV. EXPERIMENTS AND RESULTS

This section presents evaluations of the proposed model by
showing its performance in learning movement primitives from
artificial and real-world demonstrations, shows the influence
of the system components via ablation studies, and compares
it with several baseline MPs.

A. Modelling Different MPs with Common Points

In this section, we aim to evaluate the performance of our
model in a scenario where the model needs to learn from
a diverse set of demonstrations with common points. Both
CNEP and CNMP are trained with the dataset of four SM
trajectories shown in Fig. 3a, where the trajectories intersect at
various points. Fig. 3b provides sample trajectory generations
from CNEP and CNMP models. The numbers on the legend
next to CNEP correspond to the probability of assignment
of one of the experts. The dashed lines correspond to the
demonstration trajectories in the dataset. When these models
are conditioned from points unique to single trajectories, both
models generate the required trajectories successfully (Fig.
3b-bottom). However, when they are conditioned from points
close to the intersection, CNMP starts failing, whereas CNEP
successfully generates the correct trajectories, as shown in
the top row of Fig. 3b. As shown, while the CNMP model
generates a trajectory that resembles an interpolated trajectory,
our model assigns a high probability to one of the experts,
which generates a trajectory close to one of the demonstrations
in the dataset. Note that the obtained high probability value,
when the conditioning point is very close to the intersection,
is due to the individual entropy term in our loss function and
our winner-take-all strategy.

B. Comparison on Trajectories with Increasing Complexities

To present the advantages of the CNEP model, its per-
formance is evaluated and compared to a group of baseline

methods, including ProMP, GMM-GMR, CNMP, and Stable
MP. Three datasets of sensorimotor trajectories with gradually
increasing complexities are created. These three datasets are
shown on the left side of Fig. 4. After training each method
with the datasets, a test set is created with 50 pairs of inter-
mediate and end conditioning points and their corresponding
ground-truth trajectories. The intermediate conditioning points
were sampled from the regions where trajectories of different
modes come close, as shown with the red cross (x) markers.
The endpoints were sampled from the training range, as shown
with the blue plus (+) markers in the same figure. The ground
truth trajectories in evaluations were selected as the trajectories
closest to the conditioning points in the demonstration set. The
Mean-Squared Error (MSE) along the generated and ground
truth trajectories were calculated for each query, and the mean
and standard deviation of the errors are reported in Table
I. Each method successfully generated plausible trajectories
with low errors when the demonstration trajectories come
from a unimodal distribution. However, as the complexity
of the dataset increased, our method CNEP outperformed
all other methods. The right side of Fig. 4 features several
sample trajectories generated by these methods. As shown,
while CNMP, GMM-GMR, and ProMP generate extrapolated,
interpolated, or shifted trajectories that might correspond to
mixed combinations of the demonstrated ones, our CNEP
model can select the correct primitive and generate the target
trajectory successfully.

TABLE I
MSE OVER GENERATED TRAJECTORIES WHEN CONDITIONED FROM

INTERMEDIATE POINTS

Unimodal Bimodal Multimodal
ProMP 0.017 ± 0.010 0.312 ± 0.314 0.199 ± 0.191
GMM-GMR 0.017 ± 0.009 0.096 ± 0.120 0.162 ± 0.065
CNMP 0.015 ± 0.006 0.043 ± 0.078 0.112 ± 0.074
Stable MP 0.016 ± 0.014 0.017 ± 0.035 0.058 ± 0.071
CNEP 0.015 ± 0.005 0.013 ± 0.013 0.027 ± 0.042

1) Influence of the Loss Components: The loss term is one
of the novel contributions of this paper, and the influence of
the components in the loss term requires further investigation.
For this, three variants of the CNEP model were created:

1) CNEP-Uniform (CNEP-Uni): CNEP model where the
coefficient of the batch entropy term, α2 in Eq. 2, is set
to 0. The batch entropy term promotes using all decoders
to learn different skills collectively.

2) CNEP-UnSpecialized (CNEP-UnSpec): CNEP model
where the coefficient of the individual entropy term,
α3 in Eq. 2, is set to 0. The individual entropy term
promotes decoder specialization by rewarding high-
probability matches between experts and encoded rep-
resentations.

3) CNEP-Reconstruction-only (CNEP-Rec): CNEP model
where coefficients of both entropy-related loss terms, α2

and α3 in Eq. 2, are set to 0. This model only considers
the reconstruction loss.

In addition, our CNEP model follows a winner-take-all
approach: It outputs only the prediction of the responsible
expert. Another approach might be using a weighted mixture
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Fig. 4. The left column presents datasets of sensorimotor trajectories with
increasing complexities. Correspondingly, the right column presents synthe-
sized trajectories on an example run upon training. Modeling the skills these
trajectories realize becomes more challenging as the number of modalities
increases. However, different experts inside the CNEP model can successfully
handle the increasing complexity.

TABLE II
MSE OVER GENERATED TRAJECTORIES

Unimodal Bimodal Multimodal
(4 modes)

CNEP-Uni 0.042 ± 0.042 0.185 ± 0.057 0.120 ± 0.079
CNEP-UnSpec 0.033 ± 0.031 0.069 ± 0.096 0.050 ± 0.077
CNEP-Rec 0.031 ± 0.028 0.113 ± 0.045 0.064 ± 0.069
CNEP-MoE 0.046 ± 0.049 0.061 ± 0.071 0.040 ± 0.061
CNEP 0.046 ± 0.049 0.058 ± 0.071 0.028 ± 0.049

of all experts (MoE). To justify our decision and compare
it with its MoE variant, a CNEP model with a Mixture-of-
Experts (CNEP-MoE) has been created. These 4 variants were
trained alongside the original CNEP on the datasets shown in
Fig. 4. Table II presents the MSE errors computed along the
predicted and ground-truth trajectories. As shown, using all
loss terms and our winner-take-all approach outperformed its
variants.

2) Influence of the Number of Experts: The number of
specialized experts inside the CNEP model also affects the
overall performance. Results gathered in Table III compare 3
CNEP models with 2, 4, and 8 experts. Increasing the number
of experts in the CNEP model to a number greater than or
equal to the number of modalities of the demonstration data
improves CNEP’s performance. For example, when the data
comes from a 2-modal distribution, the difference between

CNEP-2 and CNEP-8 is negligible. As the number of modal-
ities increases, the model must use more experts.

TABLE III
MSE OVER GENERATED TRAJECTORIES

2 Modes 4 Modes 6 Modes
CNEP-2 0.005 ± 0.087 0.045 ± 0.038 0.063 ± 0.167
CNEP-4 0.005 ± 0.090 0.042 ± 0.038 0.033 ± 0.148
CNEP-8 0.004 ± 0.048 0.042 ± 0.04 0.032 ± 0.168

C. Learning from Real Robot Demonstrations

In this section, we evaluate the performance of our system
on two real-world tasks using a robotic manipulator, the Baxter
robotic platform [28]. In both experiments, demonstrations
were collected following the kinesthetic teaching approach
[3]. The first experiment demonstrates the learning and gen-
eralization capabilities of the CNEP model, where the robot
is expected to realize an obstacle avoidance task. The sec-
ond experiment illustrates how CNEP performs against high-
dimensional sensory data on a more complex task that requires
picking and placing objects in different configurations.

1) Obstacle Avoidance: The first experiment investigates
the advantages of CNEP over CNMP in a multimodal obstacle
avoidance task where two demonstrations that avoid obstacles
from different sides were shown by an expert. The SM
demonstrations include (1) the timestamped points of seven
joints of the manipulator in the joint space and (2) the 7-
dimensional pose of the end effector in the Cartesian space
(Fig. 5). We carried out evaluations both in Cartesian and joint
spaces. To investigate the capabilities of the CNEP model, we
chose to condition both the CNMP and CNEP on distinctive
starting points. These conditioning points were selected to lie
at the midpoint between the initiation points of the two demon-
strations to compare the generalization capabilities offered by
the models.

After training, both models were requested to generate
the obstacle avoidance skill. In the first case, where models
were trained with the trajectories of end-effector positions,
generated values were passed through a PID controller and an
inverse kinematics module before the execution on the robot.
Similarly, generated joint angle values are passed through a
PID controller and a forward kinematics module in the second
case for illustration purposes. Results in Fig. 6 indicate a dis-
tinctive pattern, supporting our initial claim. While the CNMP
tends to interpolate between the provided demonstrations, the
CNEP demonstrates a preference for adhering closely to the
demonstrated behaviors. To explain the implications of this
behavior for real-world robot tasks, we run the trained models
on the real robot and present the results in Fig. 7. Given
these demonstrations, CNMP-generated trajectories lead to
collisions while CNEP-generated trajectories can safely avoid
obstacles. The dataset from these demonstrations comprises
two SM trajectories that move the robot arm from a start to
an end position while avoiding an obstacle, and grasp the target
object by pressing a button.

2) Pick-and-Place Wine Glasses on a Dish Rack:
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Fig. 5. Demonstrations of the obstacle avoidance skill are being performed
by an expert. Kinesthetic teaching is used to generate sensorimotor demon-
strations. Later, this data is used to train CNEP and CNMP models.

Fig. 6. Using the expert demonstrations (shown with dashed lines), two
comparisons are made: one in the Cartesian space and another in the joint
space. Here, only the former comparison is presented for brevity. The
coordinates of the end effector are used to train a CNMP and a CNEP model.
Conditioned on an observation (shown with •), CNEP (shown in orange)
chooses one of the modes and generates motion trajectories closer to the
demonstrations while CNMP (shown in blue) interpolates between modes,
leading to collisions (shown with X) with the obstacle (shown in gray).

a) Individual Skills: In this experimental setup (Fig. 8),
the robot is expected to pick wine glasses from the tabletop
and place them on a designated dish rack. Each glass can be
grasped from 2 different locations: (1) from the rim and (2)
from the stem. If the robot grasps the wine glass from the rim,
it can hang the glass to the side of the dish rack (Places 1 and
2 in Fig. 8). If it grasps from the stem, it can put the glass

(a) (b)

Fig. 7. In (a), the generated trajectory by the CNMP model collide with
the box in the middle. In (b) and (d), CNEP only interpolates within
demonstrations from one mode and, therefore, follows one of the possible
modes, successfully generating paths that avoid obstacles.

Fig. 8. In this setup, the robot has access to an external camera (top camera)
to pick wine glasses from the table top and place them on a dish drying rack.
The top camera takes RGB pictures of the tabletop, which are used to extract
spatial features of the objects. A wine glass offers 2 grasping locations for
Baxter: (1) from the rim and (2) from the stem. Also, there are 4 placement
options for each wine glass. Refer to the text for the details about the scenario.

upside down on the top of the dish rack (Places 3 and 4).
Initially, the robot captures RGB images of the tabletop that

has a resolution of 640x480 pixels. These images are then pro-
cessed by the pre-trained object detection network MobileNet-
v2 [29]. In this process, we exclude the classification layer at
the end of the MobileNet-v2 model to focus on extracting only
the spatial features of the objects in the image. This extraction
results in a 1280-dimensional feature array that represents the
spatial characteristics of the detected objects. Next, trajectories
of target skills are demonstrated by an expert. Extracted feature
arrays are combined with demonstration trajectories to form
the input for CNEP. The complete input for the CNEP model is
a list of 1288-dimensional trajectories: the 1280-dimensional
feature array from MobileNet-v2, the 7-dimensional pose of
the end-effector, and the status of the gripper (whether it is
open or closed). Thus, the system integrates computer vision
through MobileNet-v2 with the demonstration trajectories to
control the robot executing this complex manipulation task.

After training the CNEP model, we trained a ProMP and a
GMM using the same input to compare the trajectory genera-
tion performances. When the data contained 1288 dimensions,
both approaches failed to model trajectories. Therefore, the
dimensionality of the data is reduced following the technique
given in [30]. When testing, ProMP and GMM failed to
grasp the glass, while CNEP successfully grasped, picked, and
placed it, as shown in Fig. 9. All demonstration and execution
videos are available at https://www.youtube.com/playlist?list=
PLXWw0F-8m ZZD7fpGOKclzVJONXUifDiY.

b) Online Conditioning and On-the-fly Adaptation:
Conditioned on the real-time input from the camera, the
position of the end-effector, and the status of the gripper,
CNEP can produce real-time control commands to realize
target skills. As a proof-of-concept demonstration, in the same
setup, we changed the tabletop configuration twice during
the execution of the trajectory generated by the CNEP. Our
system successfully reacted to the configuration changes by
changing the responsible expert and, hence, the produced
control commands, as shown in Fig. 10.

https://www.youtube.com/playlist?list=PLXWw0F-8m_ZZD7fpGOKclzVJONXUifDiY
https://www.youtube.com/playlist?list=PLXWw0F-8m_ZZD7fpGOKclzVJONXUifDiY
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Fig. 9. 40 pick and place demonstrations are provided. 3 models were trained
on this data: a ProMP, a GMM, and a CNEP. Then, the wine glass was
placed at a new location, and the models were conditioned on this observation.
While ProMP and GMM failed to grasp the glass properly, CNEP successfully
completed the task.

(a) (b) (c)

Fig. 10. When the tabletop configuration is changed during the execution of
a trajectory, CNEP can adapt by continuously conditioning on the current
sensory data and switching among experts on-the-fly. (a) CNEP chooses
expert-0 to grasp the glass from the stem and place it straight on the dish
rack. During execution, the hanged glass is removed. (b) CNEP switches to
expert-1 to grasp the glass from the rim and hang it on the side of the dish
rack. As it proceeds, the configuration changes again, and CNEP switches to
expert-3, which hangs the glass to the available spot.

V. CONCLUSION

In this study, we introduced an LfD method, namely the
Conditional Neural Expert Processes. CNEP is proposed to
improve the modeling and generation capabilities of LfD
systems when available demonstrations correspond to diverse,
multimodal sensorimotor trajectories. This is achieved by the
utilization of (1) the novel architectural components, the Gate
Network, and the experts, and (2) the novel components of the
loss function, the batch entropy and the individual entropy.

Our experiments demonstrated that CNEP is a robust LfD
approach for modeling and generating robotic skills even in
real time. It successfully models intersecting multimodal or
significantly different trajectories. It has better performance
than baseline methods and effectiveness in real robot exper-
iments. The number of experts is set manually and can be
optimized as a hyper-parameter in the future. One limitation
of the CNEP model is that, as a probabilistic framework, it
does not guarantee passing through the observation points and
requires using a higher-level module, such as a PID controller,
to guarantee precision at observation points. Additionally,
similar to other neural network-based approaches, the CNEP
cannot extrapolate outside the training range.
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“An approach for imitation learning on riemannian manifolds,” IEEE
RA-L, vol. 2, no. 3, pp. 1240–1247, 2017.

[16] A. B. Pehlivan and E. Oztop, “Dynamic movement primitives for human
movement recognition,” in IECON 2015-41st Annual Conference of the
IEEE Industrial Electronics Society. IEEE, 2015, pp. 002 178–002 183.

[17] H. Girgin and E. Ugur, “Associative skill memory models,” in IROS.
IEEE, 2018, pp. 6043–6048.

[18] S. Calinon, “A tutorial on task-parameterized movement learning and
retrieval,” Intelligent service robotics, vol. 9, pp. 1–29, 2016.

[19] E. Ugur and H. Girgin, “Compliant parametric dynamic movement
primitives,” Robotica, vol. 38, no. 3, pp. 457–474, 2020.

[20] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Model learning with local
gaussian process regression,” Adv. Robotics, vol. 23, 2009.

[21] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes for
data-efficient learning in robotics and control,” T-PAMI, vol. 37, no. 2,
pp. 408–423, 2013.

[22] M. Arduengo, A. Colomé, J. Lobo-Prat, L. Sentis, and C. Torras,
“Gaussian-process-based robot learning from demonstration,” Journal
of Ambient Intelligence and Humanized Computing, pp. 1–14, 2023.

[23] Y. Yildirim and E. Ugur, “Learning social navigation from demonstra-
tions with conditional neural processes,” Interaction Studies, vol. 23,
no. 3, pp. 427–468, 2022.

[24] S. E. Ada and E. Ugur, “Meta-world conditional neural processes,” arXiv
preprint arXiv:2302.10320, 2023.

[25] A. Gasparetto and V. Zanotto, “A new method for smooth trajectory plan-
ning of robot manipulators,” Mechanism and machine theory, vol. 42,
no. 4, pp. 455–471, 2007.

[26] L. Biagiotti and C. Melchiorri, Trajectory planning for automatic
machines and robots. Springer Science & Business Media, 2008.

[27] L. Biewald et al., “Experiment tracking with weights and biases,”
Software available from wandb.com, vol. 2, p. 233, 2020.

[28] S. Cremer, L. Mastromoro, and D. O. Popa, “On the performance of the
baxter research robot,” in ISAM, 2016, pp. 106–111.

[29] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in CVPR, 2018.

[30] O. Dermy, M. Chaveroche, F. Colas, F. Charpillet, and S. Ivaldi, “Predic-
tion of human whole-body movements with ae-promps,” in Humanoids,
2018, pp. 572–579.

https://github.com/yildirimyigit/cnep

	Introduction
	Related Work 
	Method 
	Problem Formulation
	Background: CNMP
	Proposed Approach: CNEP
	Architecture Overview 
	Training Procedure 
	PID Controller 


	Experiments and Results 
	Modelling Different MPs with Common Points
	Comparison on Trajectories with Increasing Complexities
	Influence of the Loss Components
	Influence of the Number of Experts

	Learning from Real Robot Demonstrations 
	Obstacle Avoidance
	Pick-and-Place Wine Glasses on a Dish Rack


	Conclusion 
	References

