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Abstract: Industry 5.0, the latest evolution in industrial processes, builds upon the prin-
ciples of Industry 4.0 by emphasizing human-centric approaches and the integration of
virtual reality technologies. This paradigm shift underscores the importance of collabora-
tion between humans and advanced technologies with a focus on optimizing efficiency,
safety, and worker skill development. Based on the PRISMA 2020 guidelines, this study
conducts a systematic literature review, identifying 328 papers from databases. After
applying inclusion and exclusion criteria, 24 papers were selected for detailed analysis.
The review provides valuable insights into the diverse evaluation methods employed
in the literature, and a detailed classification of 29 human factors with their associated
metrics. Despite the absence of a standardized method for assessing human factors in
VR experiences, this comprehensive analysis of 240 different ways of measuring factors
highlights the current state of evaluating human-centered VR experiences in Industry
5.0. While the review reveals some limitations such as potential bias in study selection
and heterogeneity of methods, it also identifies significant research gaps and proposes
future directions. This study contributes to the establishment of a coherent structure for
future research and development in human-centered design within the rapidly evolving
landscape of Industry 5.0, paving the way for more effective and standardized approaches
in the future.

Keywords: human factors; virtual reality; industry 5.0; interaction; human-centered design

1. Introduction
As the transition from one industrial era to the next looms, the emergence of In-

dustry 5.0 emerges to address the limitations of its predecessor while introducing new
opportunities and challenges. This revolution envisions a landscape of autonomous manu-
facturing enhanced with human intelligence: a concept articulated by Mourtzis et al. [1]
and Schroeter [2]. This fusion of automation and human intelligence redefines production,
creating a collaborative ecosystem where machines and humans synergistically enhance
productivity and innovation.

Within this shifting panorama, Industry 5.0 emerges as a beacon of hope, addressing
the limitations and complexities posed by its predecessor. Its vision extends to a more
inclusive and sustainable production model, one that values not only technical efficiency
but also the well-being and growth of the workforce. This human-centric approach is
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vividly illustrated by Industry 5.0’s aspiration to harness the potential of innovative dig-
ital technologies while nurturing a harmonious human-machine interaction [3,4]. This
interaction envisions smart industrial environments where human operators and machines
collaborate seamlessly, yielding a new era of production excellence [5].

In alignment with Industry 5.0 principles, virtual reality (VR) training systems repre-
sent innovative solutions that blend technological advancements with human-centric de-
sign. This revolution of VR was catalyzed by the accessibility of immersive head-mounted
displays (HMDs) like the Meta Quest, HTC Vive, and Sony PlayStation VR [6], which
spurred its widespread adoption across various domains such as medicine, education,
and engineering. Nevertheless, beyond its technological aspects, VR’s integration necessi-
tates a profound understanding of human–computer interaction and user experience [7,8].
Crafting a superlative user experience involves factors like presence, immersion, and
engagement, which elevate the user’s sense of interaction [9]. Additionally, reducing VR-
induced symptoms and effects (VRISEs) becomes paramount in ensuring an enriching and
holistic User Experience (UX) [10].

In the field of VR training systems, the landscape is dynamic, yet full of intricate
challenges. As the popularity of VR surges [11] it becomes evident that the effectiveness
and efficiency of these technologies as training mediums are marked by diverse outcomes.
Daling and Schlittmeier [12] emphasize the complexity of this research field, pointing to an
excess of results that are often heterogeneous and even contradictory. While the potential
of VR is undeniable, considerable systematic research is required to fully harness their
capabilities [13]. However, such research must consider multiple human factor issues for
these VR systems to be effective and well-received by users [13].

The diversity of research methodologies and objective performance measures further
complicates the comparability of results [12]. This variance is reflective of the intricate
interplay between the multifaceted factors involved in VR experiences. Kaplan et al. [14]
illuminate the difficulties in achieving consistent findings, attributing them to the variability
in MR technologies, task specifics, training methods, and performance metrics. The paucity
of data makes the conduct of meta-analyses a challenging endeavor [14], underscoring the
need for comprehensive research that encompasses a broader range of outcome variables.

The synthesis of these insights paints a comprehensive picture of the challenges
and opportunities presented by VR training systems. While their potential is vast, their
implementation requires a deep understanding of human factors, design principles, and a
commitment to systematic research. As these technologies continue to evolve, researchers
remain engaged in the pursuit of optimized training paradigms that seamlessly merge
technology and human experience.

2. Materials and Methods
This section outlines the framework for investigating the broader implications of VR

in industrial applications, with a particular focus on evaluating and understanding the
impact of human factors. The increasing complexity and sophistication of VR technologies
in industrial settings highlight the necessity for a systematic literature review (SLR) to
comprehensively gather, evaluate, and synthesize existing research findings. The diversity
in outcomes and methodologies from prior studies emphasizes the need for a systematic ap-
proach to amalgamate data, identify consistent trends, and address discrepancies effectively.
Furthermore, the rapid advancements in VR technologies necessitate including the most
recent studies to fully assess their potential impact on user experience and performance
within industrial environments.

This SLR will employ rigorous criteria to select studies, focusing on those that illumi-
nate the integration of human factors within VR systems and their effects on user interaction
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and system efficacy. By consolidating and synthesizing the wide range of existing research,
this review aims to provide a clearer understanding of the current landscape and highlight
areas needing further investigation, thus paving the way for optimized application of
VR in industrial contexts. In this literature review method, the guidelines proposed by
Kitchenham [15], as well as the tools suggested by Carrera et al. [16] and PRISMA [17] were
used to carry out the SLR.

According to Kitchenham [15], the SLR has three phases: planning, conducting, and
documenting. These phases have their own components that are showed in Figure 1
and detailed in the following subsections. In addition, Carrera et al. [16] propose the
use of Parsif.al [18] in some of these components. This tool allows us to define goals
and objectives, import articles using BibTeX files, eliminate duplicates, define selection
criteria, and generate reports. This tool has been used in the steps of the research strategy,
publication selection and publication quality assessment as this tool helps to organize all
the papers through these stages.
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Figure 1. Stages of a systematic literature review. Adapted from Kichenham [15].

2.1. Planning and Review

The planning phase of an SLR begins with recognizing the need for such a review and
results in developing the review protocol.

2.1.1. Need for SLR

In the planning stage of an SLR, the initial step involves determining the necessity for
conducting an SLR [16]. The need for the SLR in this research is detailed in Section 1. Addi-
tionally, the broad objectives and scope of the study are delineated using the population,
intervention, comparison, outcome, and context (PICOC) framework as outlined in Table 1.

Table 1. PICOC criteria.

Criteria RQ

Population Industrial workers engaging with VR technologies in their operational settings.

Intervention Implementation and usage of VR technologies aimed at enhancing human-centric
approaches in Industry 5.0.

Comparison Analysis of different human factors evaluation methods and their characteristics for
assessing VR technologies.

Outcome Evaluation of human factors in VR environments. Classification of the methods tools
and measurements

Context Industrial settings where VR technologies are integrated, such as manufacturing plants and
engineering firms, but also laboratory tests and experiments.
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2.1.2. Specifying Research Questions

In the context of this systematic literature review (SLR), the investigation was guided
by two different research questions. The comprehensive resolution of both is imperative
for the successful execution of this systematic review. These research questions are shown
in Table 2.

Table 2. Definition of research questions.

ID Research Questions

RQ1 Is there a model for evaluating industrial virtual reality experiences that includes human factors?

RQ2 What human factors are measured in industrial virtual reality experience evaluation, and how are
they assessed?

The motivations behind the research questions in this study are already mentioned,
but in summary is to focus on enhancing the understanding and evaluation of human
factors within industrial VR environments. For RQ1, the primary motivation is to determine
whether existing models can effectively incorporate human factors when assessing VR
experiences in industrial settings. This inquiry aims to facilitate improvements in user
interaction and safety (among other factors) by identifying models that holistically evaluate
human contributions to VR applications. Regarding RQ2, the motivation is to identify the
human factors that most significantly influence VR experiences in industrial contexts and
to understand how these factors are currently assessed. This is aimed at enhancing the
design and implementation of VR systems by ensuring that the most impactful human
factors are accurately evaluated and addressed. Together, these motivations drive the
research towards developing a deeper comprehension of how human elements interact
with VR technologies, potentially leading to more effective and human-centric VR systems
in industrial applications.

2.1.3. Developing SLR Protocol

A pre-defined SLR protocol is necessary, which specifies methods that will be used to
conduct a specific literature review and will reduce researcher bias [15]. A review protocol
was developed by a teamwork of authors and externally evaluated by an expert having
experience in SLRs before its execution [16]. The developed protocol is based on PRISMA
protocol’s guidelines [17].

2.2. Conducting the Review

Following with the second phase of SLRs, a definition of the search strategy is needed.
In this section, this strategy, plus the publication selection, the quality assessment as well
as the data extraction and its posterior synthesis are described.

2.2.1. Search Strategy

To perform the systematic review, different terms have been identified. They can be
classified into these four groups:

• Virtual reality/VR.
• Industry 4.0/Industry 5.0/operator/manufacturing.
• Human factors/cognition/cognitive/user experience/UX/interaction/interactive.
• Evaluation/assessment.

Thus, the following main search equation has been created: (TITLE-ABS-KEY ({Virtual
Reality} OR vr) AND TITLE-ABS-KEY ({industry 4.0} OR {industry 5.0} OR operator OR
manufacturing) AND TITLE-ABS-KEY ({human facto*} OR {cogniti*} OR {User Experience}
OR ux OR interacti*) AND TITLE-ABS-KEY (evaluation OR assessment)).
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The electronic databases used for the search are the following: EI Compendex, IEEE
Digital Library, INSPEC, ISI Web of Science, Science Direct, and Scopus. Considering
the general equation mentioned above, it has been necessary to adapt it to the different
databases because each one has different search methods. Nevertheless, there are general
criteria that must be met by all the articles selected. First, they must be peer-reviewed
journal articles. A 10-year age period has been determined for the articles, which means that
documents published between 2013 and June 2023 will be accepted. Regarding the decision
to limit the filtering of the papers to a period of 10 years, it has been made especially because
the current VR devices on the market are relatively new due to the rapid advancement of
technology. Hence, also the human factors interest related to them is recent. In terms of the
language, all papers that are not written in English or Spanish will be excluded.

Considering all these characteristics, a total of 588 papers have been identified. The
vast majority were found in Scopus (230) and in EI Compendex (146).

2.2.2. Publication Selection

In this next step, we proceeded to review the literature. First, we defined inclusion
and exclusion criteria for the articles to ensure that the selected studies were related to
the previously defined topic. Then, we proceeded to conduct a QA to identify the most
relevant articles.

Once the identification of the 588 papers is complete, different criteria have been
defined for the inclusion or exclusion of these. Apart from the language limitation, that
only papers written in English or Spanish will be considered due to the authors’ language
understanding limitations, it has also been considered if the paper appears more than once
in the search, that is, if it is duplicated. A total of 260 duplicate papers were identified.
Finally, two other inclusion/exclusion criteria were considered. To ensure the credibility
of the published papers, we excluded papers that were not peer-reviewed and added the
condition that they were published in journals (excluding proceedings, conferences, and
the like). The inclusion and exclusion criteria are shown in Table 3.

Table 3. Inclusion and exclusion criteria for paper evaluation.

Inclusion Criteria Exclusion Criteria

Relationship with the topic The paper responds to at least one of the
two research questions.

The paper does NOT respond to any
research question.

Language The full text is written in English
or Spanish.

The full text is NOT written in English
or Spanish.

Duplicated paper The paper is NOT duplicated in
the search.

The paper appears twice or more times
as it is duplicated.

Publication The paper is published as a journal
article in the databases studied.

The paper is not peer reviewed or it has
been published as proceedings or as a

conference paper.

2.2.3. Quality Assessment (QA)

Following the exclusion and inclusion criteria, QA was conducted. This process
identified whether the articles were related to the specific topic and whether they were
useful in terms of assessing human factors in an industrial VR environment. The papers
were divided between two reviewers for evaluation, who then randomly sampled and
conducted double evaluations to ensure alignment with the established criteria. Any papers
that presented uncertainties were subsequently discussed jointly by the reviewers. Three
QA questions were formulated, reviewed, and scored based on the analysis. QA1 is related
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to RQ1 and the search of models regarding VR and human factors, while QA2 and QA3 are
more related to RQ2:

QA1—The proposed topic is related to human factors in an industrial virtual reality
environment? This QA aims to identify papers that at least are focused on human factors
in industrial VR environments.

QA2—Does this research help to identify the human factors affecting industrial VR
environments? This QA aims to value papers which assist in the identification of human
factors influencing industrial VR environments.

QA3—Does this research describe how to evaluate human factors in industrial VR
environments? QA3 aims to value papers that show methods, tools, or techniques to
evaluate human factors in industrial VR environments.

The objective of this QA was to facilitate the understanding of the studies’ appropri-
ateness and usefulness to this current study. For an easy classification, Parsif.al’s three-type
rating criteria were used: high, medium, and low. A score of 2 was given to studies that
fully met the quality standard, a score of 1 was given to studies that partially met the
quality standard, and a score of 0 was given to the studies that did not meet the quality
standard. Taking this into account, the maximum score for each study is 6 (i.e., 3 × 2 = 6),
and the lowest possible score is 0 (i.e., 3 × 0 = 0).

In this SLR, we considered those articles that obtained a score higher than 3 to ensure
high-quality and reliable findings. We finally ended up with a total of 26 articles. Figure 2
shows the process carried out during the literature review. Beginning with a total of 588
papers identified, 260 were discarded for being duplicates. From the 328 left, after reading
the titles and abstracts, 259 of these were rejected considering inclusion and exclusion
criteria. Finally, the last 69 papers, after reading them one by one, were evaluated taking
the QA into account. A total of 24 papers received a score higher than 3 out of 6. These
papers were analyzed in depth for data extraction and synthesis.
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2.2.4. Data Extraction

In this step, the 24 selected papers were used for data extraction. The following data
were extracted from each study:

The name of authors, title of the paper, name of the journal, impact factor (JCR),
publication year, sample of the experiment, gender % of the sample, expertise of the sample
(familiarity with the task and with the technology), human factors measured, metrics used,
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units of measurement, data collection method, type of VR device used, and extra devices
used (biosensors, haptics. . .).

2.2.5. Data Synthesis

Following the data extraction process, a comprehensive list of human factors, metrics,
and techniques has been compiled from the analysis of 24 studies. Additionally, detailed
information on the types of VR devices and the auxiliary equipment used to measure
human factors was gathered. To ensure a rigorous classification of this data, a peer review
of the lists of human factors has been conducted. This step is crucial for validating the
accuracy and relevance of the data collected. All this data will be thoroughly described in
the subsequent sections.

3. Results
This article evaluates the literature through a critical lens, offering a comprehensive

overview of the subject. This section shows the results derived from the characterization of
the literature, as well as answers the two research questions set out above.

3.1. Literature Characterization

Prior to discussing the results and analysis of the human factors and addressing the
RQs, a brief summary of the general characteristics of the studies involved will be provided.

3.1.1. Evolution in the Field

Considering the years of publication of the articles after removing duplicated papers,
one can see the evolution of interest in human factors affecting industrial VR environments.
In Figure 3 this interest can be seen more visually. It should be noted that this search was
conducted in June 2023 and therefore 2023’s data are not displayed on the graph as the year
is incomplete. However, it is expected that the number of publications during this year will
be even higher as more than 75% of the identified publications date from 2017 to 2023 and
VR technologies are increasing even more.
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3.1.2. Nature of Journals

We analyzed where the 24 selected articles were published and highlighted the wide
variety of journals. Only four journals published more than one paper: Applied Sciences
MDPI (2), Human Factors (2), Robotics and Computer-Integrated Manufacturing (2), and
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VR (2). In terms of indexing, it can be seen in Table 4 that 50% of the identified journals
belong to the first quartile, 30% to the second, 5% to the third and 15% to the fourth quartile:

Table 4. Impact of the identified journals (JCR = Journal Citation Reports; nd = not defined).

Journal Title Quartile JCR

Applied Sciences MDPI Q2 2.7
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Q2 3.8

British Journal of Educational Technology Q1 3.8
Computers in Education Journal Q4 6.7

DYNA Q4 3.8
EURASIA Journal of Mathematics Science and Technology Education Q2 0.903

Human Factors: The Journal of the Human Factors and Ergonomics Society Q1 3.3
International Journal of Advanced Manufacturing Technology Q2 3.4

International Journal of Industrial Ergonomics Q2 3.1
Journal of Cleaner Production Q1 11.1
Journal of Mechanical Design Q1 3.3

Manufacturing Technology Q3 0.9
Multimedia Tools and applications Q1 3.6

Presence Teleoperators and Virtual Environments Q4 nd
Production and Manufacturing Research Q1 4.1

Robotics and Computer-Integrated Manufacturing Q1 10.4
Robotics MDPI Q1 3.7

Scientific Reports (Nature) Q1 4.6
Sustainability MDPI Q2 3.9

Virtual Reality Q1 4.2

3.2. RQ-1 Is There a Model for Evaluating Industrial Virtual Reality Experiences That Includes
Human Factors?

Among all the papers selected, only 3 papers propose methods for assessing human
factors in virtual reality. Peruzzini et al. [19] proposes a method to carry out reliable and
effective factory ergonomic analyses during the design stages. It proposes a series of
devices as well as seven phases to follow during the process of creating a VM (Virtual
Manufacturing) simulation. The phases include creating the virtual scene, configuring the
devices, creating the scripts, recording the user’s experience and actions, exporting and
isolating the most critical operations, and finally, evaluating them after post-processing. It
also shows a case study comparing an experience developed using the method and another
desktop-based experience. This study also shows the performance indicators measured
during the creation of the simulation and the user testing.

The second case study of Peruzzini et al. [19] deals with the UX assessment strategy to
identify potentially stressful conditions for workers. For this purpose, different devices are
again proposed, including an HMD and different biometric and motion tracking devices to
analyze user data. It also discusses the relationships between mental workload, stress, and
physical workload, which tools to use and how to calculate the results using the data from
the different devices and questionnaires.

In the third case study, Peruzzini et al. [20] defines a multimodal VR set-up for the
human-centered design of industrial workstations. In this case it does not focus so much
on the process, although it does propose different devices to be used such as eye trackers,
motion tracking, etc. The paper focuses more on proposing which factors, metrics, and data
collection methods should be collected. Among these factors are efficiency, effectiveness,
and satisfaction.

Ahmed and Onan Demirel [21], discuss the challenges of prototyping user-focused
emergency situations, noting that most approaches prioritize evaluating human perfor-
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mance through usability testing. However, there is currently no guidance on the typology,
variety, or complexity of prototypes that should be developed to address users’ needs. The
aim of their paper is to establish prototyping methodologies for the early design evaluation
of human performance. To achieve this, they propose a mixed-prototyping approach that
integrates human subjects, CAD, marker-less motion tracking devices, and HMDs, with a
specific focus on emergency situations and how to prototype for them effectively. Although
there are limited references to models to evaluate industrial VR experiences, including
human factors, they collected information on devices, tools, sample sizes, and participant
skills from existing studies to identify recurring patterns.

3.2.1. Devices

In terms of devices, two main types of VR devices have been found. CAVE (cave
automatic virtual environment) and HMD (head-mounted display). CAVE consists of a
room-sized VR system where users stand inside and interact with 3D images projected
on its walls using tracking devices, enabling collaborative experiences but at a higher
cost and requiring dedicated space. On the other hand, HMDs are wearable devices like
goggles or helmets, providing a more personal VR experience with handheld controllers
for interaction. While generally designed for individual use, some HMDs support online
multiplayer and offer varying cost options, making them more accessible to consumers.
The usage rate of HMDs (83%) is significantly higher than CAVE devices (17%). In addition
to the core elements to develop these experiences, in most of the studies they have been
accompanied by other types of elements mentioned below. Only in Ahmed and Onan
Demirel’s studies [21] and also Refs. [22–24] are HMDs used alone. The full Table A1 of the
devices used can be found in Appendix A.

• Motion capture: Motion capture devices are frequently used. In 10 out of the 24 papers,
the use of motion capture devices is mentioned to track the whole body or specific
points in more detail. In the case of HMDs, the position of the hands can be tracked,
but with devices such as Leap Motion [19,25,26], ART Tracking [27], Empatica E4 [28],
etc., much more precise data can be obtained.

• Biosensors: The category of biosensors includes all those devices that allow the col-
lection of physiological data. A review of the literature shows that eight of the
twenty articles in which HMDs are used have opted for the use of the HTC Vive
Pro Eye [19,22,28–30], which contains a built-in eye tracker. Other researchers use
other methods for eye tracking such Tobii glasses [20,31]. In addition to eye track-
ing, it is common to incorporate heart rate meters [28,30,32], as well as other not so
common sensors such as EEGs [33]. In this way, in addition to collecting information
through questionnaires and other methods in which participants rate themselves,
these biometric data can complement that information from another perspective.

• Sound: Although HMDs have built-in audio, three studies mention the use of head-
phones or 5.1 external sound systems. Ref. [32], for example, highlights the im-
portance of industrial noise in the environment of the experience, helping acousti-
cally to show the position of hydraulics, or motors in the background. Refs. [29,34]
use headphones instead to isolate participants from the outside and create a more
immersive experience.

• Controllers: Although the CAVE or HMD itself has its own controllers, two authors
mention the use of controllers in the experiments. They refer to non-standard con-
trollers. That is, other than the default ones of the CAVE or HMD itself, considering
that they already have them, Refs. [35,36] use a joystick and a keyboard, respectively.

• Physical elements and haptics: The last category of devices is those that in this article
have been called physical elements and haptics. The purpose of these elements is to
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enhance the experience. For example, Ref. [32] mentions the use of a rowing machine.
They overlap the rowing experience with the physical object to replicate the effort and
movements. It is similar with Ref. [37], where they recreate the space in which the
operator’s maintenance space is recreated, with walls to restrict movement and even
removable elements such as nuts and bolts. In Ref. [26], they instead use a commercial
Moog FCS robot equipped with three cylinders that move the subject who experiences
the sensation of being in a hydraulic excavator. Ref. [37] also mentions a robotic arm,
this time of a smaller size that allows users to experience a perception of collision
between virtual objects.

3.2.2. Tools

In addition to the devices, the different techniques and methods used to collect data
from the experiences have been compiled (Figure 4). The most used method is the ques-
tionnaire, with standard questionnaires such as NASA-TLX [38], QUIS [39] or UEQ [40],
appearing in at least 13 articles. Also, self-generated questionnaires, i.e., questionnaires
that are either adaptations of existing questionnaires or created by the researchers of the
study, are used in 11 articles. Following this method, the next most used methods were
eye-tracking (six items such as Ref. [41]), stopwatch (six) to measure time, and both position
tracking (four) and video recordings (four) to make user observations.
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3.2.3. Sample Size and Skills

The sizes of the samples used in the different studies have been collected. It is notice-
able the big difference in the number of participants they use for the experiments, varying
from one person repeating more than once the experiment, to forty-four participants. Most
of the studies justify the number of participants using the ANOVA. The gender of the
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participants is mentioned in 16 of the 24 papers. However, it is not considered in the
conclusions obtained.

Regarding the skills of the participants, two data have been collected in particular:
the experiences the users had in the task of the test, and the skills with XR devices. Not
all papers take these data into account. In terms of the topic of the test, for example [32],
collects this information prior to the experience to understand if the level of expertise has
any effect on the ability to complete the tasks. In the case of skills with XR devices, although
not in all cases this information is collected, most of the papers mention prior training or
initial contact with the glasses in the case of not having used them before.

3.3. RQ-2 What Human Factors Do They Measure and How Are They Assessed?

By analyzing the literature, a total of 29 human factors have been found to be mea-
sured in different ways in the articles. To provide a clear overview of all the factors, a
comprehensive Table A2 has been created and is available in the Appendix A. This table
offers various classifications of these factors. Firstly, it determines whether the metric
used to measure the factor is hedonic or pragmatic. Secondly, it classifies the factors into
cognitive, physiological, process-related, or other categories. Additionally, the table maps
the unit of measurement, the data collection method, and the author for each factor. This
structured approach ensures a thorough and detailed understanding of the data collection
methodologies and their respective applications.

Regarding pragmatic and hedonic classification, according to Hassenzahl [42], some-
thing may be perceived as pragmatic because it provides effective and efficient means to
manipulate the environment. On the contrary, if it is perceived as hedonic, it is because it
provides stimulation, identification, or provokes memories. In this case, metrics have been
related to the typology of data obtained from users. Both dimensions have been identified
as relevant predictors of an interactive product’s overall evaluation [43].

In the classification of the three elements, cognitive, physiological, and process, these
definitions are defined as follows. In the cognitive domain, metrics are used to evaluate
and quantify aspects related to thinking, information processing, and human decision
making, and here metrics such as immersion [44] and learnability [23,27] among others,
are included. As for the physiological domain, it refers to metrics related to bodily aspects,
such as posture and comfort [19], as well as brain activity [33]. Finally, in the process
category, metrics related to the development of the activity itself are grouped, such as task
execution time [20], task execution accuracy [34], and even error identification or ease of
use [24].

To examine the varying significance of the different types of data collection methods,
Figure 5 was created. From the table, it is evident that pragmatic methods dominate
across most categories, particularly in the process and cognitive dimensions, with 71 and
59 occurrences, respectively, contributing to a substantial total of 177. Hedonic methods
appear less frequently, with notable counts only in the cognitive (47) and process (10)
categories, resulting in a total of 62. Physiological methods are predominantly pragmatic
(47 occurrences) but are scarcely represented in the hedonic (6) category. Overall, the total
occurrences of each method type highlights a preference for pragmatic methods in data
collection, as shown by the aggregated totals, emphasizing their prominence in this study.
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With all this in mind, all these human factors have been classified in a table, indicating
the metric with which they have been measured, the unit of measurement, and the technique
or method of data collection that has been used. Likewise, these metrics have been classified
in two ways. First, they were classified as hedonic or pragmatic. Then, it has been assigned
a category among these three: cognitive, physiological, process.

In this exploration, it can be seen how different authors face the assessment. Das
et al. [31] initiate the exploration by emphasizing the significance of understanding mental
workload and task performance. It echoes the statements of Khamaisi et al. [28], who delves
into measuring mental factors to analyze the cognitive workload and mental effort of opera-
tors. Both papers underscore the importance of optimizing workload, ultimately enhancing
productivity, and preventing health issues in industrial settings. Their shared goal is to
ensure worker well-being and satisfaction while supporting human–robot collaboration,
thereby reducing industrial costs.

Bu et al. and Morosi and Caruso [26,32] instead align in their focus on user-centered
design, performance evaluation, and safety considerations. These papers, like Hoe et al. [44],
emphasize user experience, engagement, and satisfaction. By collecting subjective feedback,
they aim to iterate design improvements and optimize VR environments for enhanced user
performance and satisfaction.

Peruzzini et al. [19] and Rogers et al. [36] take a different but equally crucial path,
evaluating ergonomic factors, physical comfort, and safety within industrial contexts.
They align with Bernard et al. [37] in their shared pursuit of enhancing operator comfort,
reducing the risk of injuries, and minimizing physical and cognitive strain in the workplace.

Both Bernal et al. [35] and Doolani et al. [34] introduce the intriguing dimension of
user satisfaction, engagement, and learning. These studies, along with Peruzzini et al. [20],
underscore the importance of assessing user experience and the effectiveness of training
methods. By measuring factors like enjoyment, comfort, and readiness level, they aim to
optimize training processes, enhance learning outcomes, and ensure user satisfaction.

Hoesterey and Onnasch, and Kuts et al. [29,30] dive into safety assessment and user
health in high-risk environments, mirroring the safety considerations in Havard et al. [45].
They collectively strive to identify and manage risks, optimize safety, and improve decision
making in challenging scenarios.

As it can be seen, the approaches to these measurements vary significantly. Although
all this information can be found in Appendix A (Table A2), Table 5 shows a part of the
whole table to get an idea of the data collected.
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Table 5. Identified human factors, metrics, and data collection methods (the full table can be found in
Appendix A (Table A2); n/d = not defined).

Factor Hedonic vs.
Pragmatic Categories Metrics Unit of Measurement Technique/Data

Collection Method Paper

Acceptability Hedonic Cognitive Suitability Interview Interview [27]

Attention Hedonic Physiological Gaze Time per object Eye tracking data analysis [30]

Comfort Hedonic Physiological Brain Activity (Alpha) n/d EEG

[33]

Comfort Pragmatic Process Spatial properties
Self-generated
questionnaire
(1–5 and 1–10)

Questionnaire

Comfort Pragmatic Process Aesthetic properties
Self-generated
questionnaire
(1–5 and 1–10)

Questionnaire

Comfort Hedonic Cognitive Likeability
Self-generated
questionnaire
(1–5 and 1–10)

Questionnaire

Effectiveness Pragmatic Cognitive Need of support Number of times
asked for help User observation

[20]
Effectiveness Pragmatic Process Workarounds created Number User observation

Effectiveness Pragmatic Physiological Gaze Number Eye tracking data analysis

Effectiveness Pragmatic Physiological
Heat map (dimension

of the area with
visual interaction

Area (mm2) Eye tracking data analysis

Effectiveness Pragmatic Process Average training time Time Manually–stopwatch

[44]
Effectiveness Pragmatic Process Average tutorial time Time Manually–stopwatch

Effectiveness Pragmatic Process Average assessment time Time Manually–stopwatch

Effectiveness Pragmatic Process Effectiveness Subjective judge
(1–5 point scale) Questionnaire

Efficiency Pragmatic Process Task execution time Time Digital simulation
analysis

[20]
Efficiency Pragmatic Physiological Postural comfort

Comfort level
(1–7, 1–4, 1–11) according

to different methods
(RULA, OWAS, REBA. . .)

Digital simulation
analysis

4. Discussion
The present scoping review aimed to transform the broad and diverse literature of

the assessment of human factors in industrial VR environments. Through the analysis of
these 24 selected papers, a critical review of the various key issues is followed by a detailed
discussion on the main topics.

4.1. Lack of Consistency About the Terms

One of the great discoveries in this review has been, in addition to seeing the many
ways that authors use to measure human factors, the lack of consistency in the taxonomy
of terms. Terms have been found in some studies to be classified as human factors but
appearing as metrics in others.

As an example, the term comfort appears in the literature as a human factor [33], but
it also appears as a metric to measure ergonomics [44]. On the other hand, learnability can
be found as an independent factor [23,24,27,34,36,44], but it can also be found as a metric
of usability [27,34,35,46]

Another more complex case is effort and performance factors. These terms appear
as human factors in Bernard et al. [37] and [22,26], respectively. Nevertheless, both effort
and performance appear directly dependent on workload, since in the NASA TLX tool
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they appear as such [21,22,26,28,31,37]. Effort, performance, and workload also appear
dependent on stress level in the literature [30].

Efficiency also appears as a human factor, [20,37,44,46] but also dependent on UX [24].
As can be seen, even the interdependencies between factors and metrics are not clear.
Sometimes this is due to the tools used that already define how to classify these elements.
These mentioned relationships can be seen in Table 6.

Table 6. Inconsistencies between term relationships.

Human Factor Metric Author

Comfort
Brain activity (Alpha)

[33]
. . .

Ergonomics Comfort [44]

Learnability
Ease of use

[24,34]
. . .

Usability
Learnability

[27,34,35,46]
. . .

Stress

Effort

[26]
Performance

Workload

. . .

Workload

Effort

[29,32,38]Performance

. . .

Effort
Perceived physical exertion

[45]
. . .

Performance Errors [29,32]

Efficiency
Assessment scores

[20,37,44,46]
. . .

User Experience
Efficiency

[30]
. . .

Reviewing the literature, a lack of consistency is also present in the collected data on
the factors most frequently used in the experiments. They are shown in Table 7, together
with the number of metrics and the metrics themselves classified. Usability, workload,
ergonomics, learnability, and user experience are the most repeated. It is worth noting the
32 related metrics classified as cognitive and pragmatic in usability. This is because most of
the papers in there have used the SUS scale [27,34,35,46], which has seven metrics of this
type, but regarding the overall number of papers that include these human factors, these
are the most frequent ones.

It can also be observed that hedonic metrics in general are considerably lower than
pragmatic metrics in both the process and physiological categories. Regarding cognitive
metrics, except for the usability factor that is related to pragmatism, the rest is dominated by
hedonic metrics. It can also be observed how in this field ergonomics tends to be measured
pragmatically with metrics of physiological characteristics.

The observed variability in the classification and measurement of human factors
within the topic of XR underscores the field’s low maturity and the complexity inherent in
capturing the multifaceted nature of human experiences. The lack of standardization in
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terms may stem from the interdisciplinary nature of XR research, where fields like cognitive
psychology, ergonomics, human–computer interaction, and industrial design converge.
Each discipline brings its own lexicon and methodological approaches, contributing to the
richness of perspectives but also to terminological discrepancies.

Table 7. Most frequent human factor metrics classified.

Human Factor Type Process Physiological Cognitive Other

Usability
Pragmatic 14 1 32 -

Hedonic 6 - 5 -

Workload
Pragmatic 18 15 6 -

Hedonic - 9 -

Ergonomics
Pragmatic - 10 - -

Hedonic - 2 - -

Learnability
Pragmatic 7 - 2 -

Hedonic - - 8 1

User
Experience

Pragmatic 3 1 3 -

Hedonic - - 4 -

The necessity for standardization is a double-edged sword. On the one hand, a unified
taxonomy would facilitate clearer communication among researchers, practitioners, and
stakeholders, enabling more effective collaboration and cumulative knowledge building.
On the other hand, the dynamism of the field may require a certain level of flexibility to
accommodate new discoveries and technological advancements.

Looking ahead, it is plausible that the field will trend towards a consensus on certain
core terms, driven by a growing body of interdisciplinary research and the establishment
of best practices. However, complete standardization may remain elusive, reflecting the
evolving and adaptive nature of human factors research in XR. As the technology matures
and becomes more embedded in industrial applications, the demand for standardized
metrics that can reliably predict user outcomes will likely increase, potentially leading to
more rigorous methodological frameworks and measurement tools.

In this scenario, the future of XR research could involve a harmonious balance between
standardized methodologies and the flexibility to explore the unique nuances of human
interaction with emerging technologies. This balance would aim to preserve the innovative
spirit of the field while providing the structure needed for its growth and integration into
industrial and other practical applications.

4.2. Correlation Among Factors

Regarding industrial VR experiences, researchers have conducted studies to uncover
correlations among various human factors, showing the intricate dynamics of user in-
teractions, subjective responses, and physiological indicators within these immersive
environments. This comprehensive analysis synthesizes these correlations into a cohesive
understanding of how users navigate and respond to the challenges presented in VR-based
industrial scenarios.

One critical correlation observed pertains to fixation metrics and hazard perception.
Ref. [31] noted that fixation frequency and fixation duration increased as participants en-
countered more hazards in their workplace. This increase in fixation metrics suggests a
heightened mental workload, as users focus more intently on potential risks and challenges
in their virtual surroundings. Furthermore, the study found that saccade duration de-
creased while saccade amplitude increased with exposure to workplace hazards. While the
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shorter saccade duration aligns with earlier research [47] the increase in saccade amplitude
represents a novel finding in this context.

Subjective workload assessment also plays a crucial role in understanding how users
perceive hazardous scenarios. In Das et al. [31], participants reported increased mental and
temporal demands as workplace hazards escalated. However, physical demand, effort,
and frustration remained largely unaffected by the hazardous scenarios, highlighting the
nuanced nature of subjective responses in VR.

Building upon the relationship between subjective responses and activity level, the
study observed that hazardous scenarios and activity levels showed a consistent correlation
with subjective workload. Interestingly, the trial’s impact on subjective responses appeared
to be insensitive. Furthermore, the NASA-TLX score, a measure of total workload, exhibited
significant correlations with various levels of mental workload. Notably, the highest
total workload was observed during mixed experiment combinations involving highly
hazardous scenarios, complex activity levels, and the initial trial.

The study reported strong and significant correlations between NASA-TLX scores
and eye movement metrics [31]. Saccade amplitude displayed a weak and non-significant
relationship with performance measures, while frustration did not correlate with any eye
movement metrics or performance measures. Subjective workload evaluation appears to be
influenced by a user’s sense of success or self-conception of their performance, underlining
the strong connection between these feelings and actual task performance.

Transitioning to the performance and user experience of VR interfaces, Kuts et al. [30]
found that VR interfaces outperformed traditional methods in terms of time spent placing
objects, with average times reduced after users gained familiarity with the virtual envi-
ronment. However, the VR scenario induced higher levels of anxiety and greater mental
and physical demands on operators. Remarkably, these factors did not significantly affect
physiological stress levels, indicating a complex relationship between perceived stress and
physiological responses.

The introduction of digital twin (DT) systems in VR also sparked interest in user
acceptance and task execution performance. Kuts et al. [30] reported promising results, sup-
porting the notion that VR can be a valuable alternative to traditional robot programming
interfaces, thanks to its acceptability and overall task execution performance.

Moreover, eye tracking studies conducted by Kuts et al. [30] revealed that users tended
to direct their attention more frequently towards the main robot VR user interface than
the robot twin. This skewed attention distribution may be attributed to the perceived
safety of the main interface, emphasizing the critical role of user perception in influenc-
ing attention and focus within VR environments. Intriguingly, attention-tracking results
suggested that the type of interface interaction in VR could further influence user atten-
tion and focus, highlighting the multifaceted nature of user engagement in immersive
virtual environments.

4.3. Overlooking of Technological and Task Skills

In VR testing environments, overlooking the technological and task skills of partici-
pants can significantly skew the results of usability studies. This oversight is particularly
problematic due to, among other factors, the digital divide, which encompasses disparities
in access to and familiarity with technology [48]. Participants with limited technological
experience might face initial difficulties that more experienced users do not, leading to an
unequal assessment of the VR system’s usability. This disparity can mask genuine usability
issues and mislead researchers about the true efficacy of the VR system. In this sense,
different strategies have been identified to minimize the impact.
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The variability in participant skill levels aggravates these issues. Participants come
with diverse backgrounds and varying degrees of familiarity with technology, which can
substantially influence the outcomes of usability studies. This happens in the study by Das
et al. [31], which highlights the need to account for diverse user backgrounds to obtain
accurate usability assessments. Novice users, those with limited experience, often face
a steep learning curve. They may struggle with basic functionalities initially but show
substantial improvement as they become more familiar with the system. This learning
trajectory needs to be carefully documented and understood to avoid misinterpreting
improvements in usability solely as a result of iterative design changes rather than increased
user familiarity.

Conversely, experienced users might demonstrate proficiency from the outset, but
their feedback could highlight more advanced issues that novice users might not encounter.
This dichotomy between novice and experienced users can lead to a diverse range of
feedback that needs to be carefully analyzed. Novice users might report basic usability
issues, while experienced users might focus on more nuanced aspects of the interface,
such as efficiency and advanced functionalities. This was observed in the study by Nenna
et al. [22], where task familiarity significantly impacted user feedback.

Iterative testing, a common practice in prototype development, further complicates
the situation. This process involves testing a prototype, gathering feedback, making
improvements, and then retesting. While essential for refining and improving a product,
iterative testing also means that participants become increasingly familiar with the task and
the prototype. This familiarity can influence their feedback and performance, potentially
leading to skewed results. For example, when users test a prototype multiple times, their
feedback may become more positive simply because they are more comfortable and adept
at using the prototype. This can create a false sense of improvement, as the enhancements
in user performance and satisfaction may be more attributable to increased familiarity
rather than genuine improvements in the prototype’s usability. Research on cognitive
testing has shown that significant practice effects can emerge over time due to repeated
testing, emphasizing the need for careful analysis of repeated testing data to distinguish
between genuine usability improvements and mere familiarity effects [49].

These dynamics have significant implications for the design of user testing protocols.
Researchers must carefully consider whether to allow for prior familiarization with the
task or technology. One approach is to conduct initial baseline testing with participants
who have no prior exposure to the task, followed by additional testing sessions to observe
changes over time. This approach can help isolate the effects of familiarity and provide a
clearer picture of genuine usability improvements. Additionally, when mixing participants
with different skill levels, it is essential to segment the data accordingly. By analyzing
the performance of novice and experienced users separately, researchers can gain a more
nuanced understanding of how different user groups interact with the technology. This
segmentation helps in identifying specific areas where novice users struggle and where
experienced users find the interface lacking in advanced functionalities. For instance, in
the study by Bu et al. [32], segmenting feedback from different skill levels provided richer
insights into user interactions and highlighted specific areas for improvement. Similarly,
Rogers et al. [36] emphasized the importance of evaluating the effectiveness of VR as a
learning tool among users with different levels of experience, further illustrating the varied
impacts of user expertise on usability assessments.

In contrast, several studies do not take user expertise into account, which can lead
to incomplete or skewed findings. For example, the study by Havard et al. [45] on digital
twin and virtual reality co-simulation does not consider the participants’ expertise levels,
potentially overlooking how varying familiarity with VR technology can affect usability
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outcomes. Similarly, the study by Morosi et al. [26] on configuring a VR simulator for
ergonomic evaluation also lacks consideration of user expertise, which might result in an
underestimation of the learning curve effects on user performance and satisfaction.

Another approach is to use a combination of qualitative and quantitative methods
to capture a comprehensive view of user experiences [50]. Qualitative feedback from
interviews and observations can provide context to quantitative data, helping to explain
why certain patterns emerge in the user testing results. For example, novice users might ex-
press frustration in interviews, which can explain high error rates observed in quantitative
metrics. Similarly, experienced users might suggest advanced features during interviews
that are not apparent in their quantitative performance data. Furthermore, researchers can
design testing protocols that account for the learning curve. This can involve conducting
baseline tests to establish initial performance levels and then monitoring changes over
subsequent sessions. By comparing these results, researchers can better isolate the effects
of familiarity from genuine usability improvements. This approach was highlighted in
research on cognitive testing, where significant practice effects were observed over time, em-
phasizing the need for careful analysis of repeated testing data [49]. Additionally, Hoesterey
et al. [29] discussed how manipulating situational risk in experimental paradigms can help
in understanding the impacts of user expertise on task performance in VR environments.

In conclusion, the variability in participant skill levels is a critical factor in user
testing that requires careful consideration. By designing thoughtful testing protocols and
segmenting participants, researchers can better manage the influence of prior familiarity
and skill levels on user testing outcomes. More extensive research in this area will continue
to enhance our understanding and enable the development of best practices for conducting
effective and reliable user tests.

4.4. Integration of Multimodal Data in Human Factors Analysis

The assessment of human factors in VR environments for Industry 5.0 leverages
various types of data to provide a comprehensive understanding of user interactions and
experiences. These data types can be broadly categorized into physiological, cognitive, and
performance metrics as previously showed in Table 4.

Integrating these diverse data sources can lead to a more holistic understanding
of human factors in VR environments. By combining physiological data with cognitive
assessments and performance metrics, researchers can gain richer insights into how users
interact with VR systems [22]. Comparing user-reported cognitive load with physiological
data, like heart rate variability and skin conductance, can help confirm and strengthen
the study’s findings. If a user reports high mental workload and this is corroborated by
an elevated heart rate and EDA, the assessment is more robust [28]. Multimodal data
integration allows for the creation of detailed user profiles that include cognitive states,
emotional responses, and physical performance. This can inform personalized VR training
programs tailored to individual needs and capabilities. Understanding how physiological
stress correlates with specific VR tasks can guide the design of more ergonomic and user-
friendly interfaces. For instance, if high stress levels are associated with certain interaction
patterns, designers can modify the interface to mitigate these issues [26]

Despite the benefits, integrating multimodal data presents several challenges. Aligning
data from different sources, each with its own temporal resolution and format, is tech-
nically complex. Solutions include using synchronized logging systems and developing
algorithms to align data streams based on common timestamps [27]. Interpreting data from
different modalities requires interdisciplinary expertise. Collaboration between experts in
physiology, psychology, and human–computer interaction is essential to make sense of the
integrated data. The sheer volume of data can be overwhelming. Advanced data analytics
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and machine learning techniques can help manage and analyze large datasets to extract
meaningful patterns.

While advanced technologies enhance data collection, they can also intrude on the
user experience. Devices like EEG caps, motion capture suits, and multiple sensors can be
cumbersome and affect natural interactions within the VR environment. Wearing multiple
sensors and heavy equipment can cause physical discomfort, potentially influencing the
user’s performance and subjective experience [51] Lightweight, less intrusive alternatives
are being developed, such as wearable sensors integrated into clothing or non-contact
biometric sensors. The awareness of being monitored can alter user behavior, known as
the Hawthorne effect [52]. Ensuring user comfort and reducing the visibility of monitoring
devices can help mitigate this issue. Current VR systems are evolving, but the need for
robust data collection often requires trade-offs with user comfort and naturalistic interaction.
Future advancements should focus on minimizing intrusiveness while maintaining data
accuracy, such as integrating biometric sensors directly into VR headsets.

5. Research Gaps and Future Research Directions
In the context of evaluating industrial VR experiences and the inclusion of hu-

man factors, there are several research gaps and future research directions that need
to be addressed.

5.1. Lack of Standardized Method for Measuring Human Factors

There is a lack of standardization of how to measure human factors according to
the needs of the experiment, and this can lead to interpreting terms in a different way,
using different scales, or even using methods that are not suitable for these technologies.
Sometimes there is a tendency to use standardized tools that have been applied in other
fields beyond VR. This can be a mistake if the tool is not validated for this technology.
This has happened before with the SSQ (Simulation Sickness Questionnaire) [53], which
was initially developed for aviation pilots and their simulators, which made the defined
zero baseline very high for the rest of the simulators. There are already papers where it is
used, but some authors [53,54] have sought alternatives or adaptations for applications,
such as the VRSQ [55]. The same applies to the NASA-TLX and its increasingly frequent
adaptations such as the SIM-TLX [56]. There are also several factors that affect this lack of
standardization that should be considered for future research.

Adapting tools from other contexts to VR may introduce inaccuracies. Future research
endeavors should prioritize the development and validation of standardized measurement
tools tailored explicitly to industrial VR, accounting for its unique characteristics for the
precise assessments of human factors.

Future research should focus on establishing general guidelines and a standardized
taxonomy that categorizes human factor metrics (e.g., cognitive, physiological, perfor-
mance, and subjective measures). This framework should encourage a balance between
objective and subjective methods while validating tools specifically for VR contexts, rather
than adapting measures from other fields without proper assessment. Collaborative efforts
among researchers and practitioners can help define clear benchmarks and shared reposito-
ries of validated tools, ensuring that assessments align with the unique characteristics and
demands of VR environments.
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5.2. Sampling Bias

Several studies underscore limitations related to the sample size and bias of their
findings. Das et al. [31] acknowledge a relatively small sample size, while Nenna et al. [22]
note that their conclusions are drawn from a limited pool of young users with limited
experience, emphasizing the need for wider samples. Havard et al. [45] similarly face the
challenge of a modest number of users in their study. The authors of Ref. [24] discuss
the limitations of a small sample size and the inability to claim representativeness. This
gives rise to several problems, among them that the studies have a biased sample and
sometimes distorted results, as there are uncontrollable variables in both the system and
the individuals. As mentioned above, it is worth noting the difference between studies in
terms of sample size, skills, and the gender of the participants.

Dealing with sampling bias is critical in industrial VR studies, as it can lead to skewed
results and limited generalizability. Commonly observed small sample sizes may not
adequately represent the diverse range of potential users in industrial settings. Limited
demographic diversity in study participants can also introduce bias. Future research should
prioritize larger and more diverse samples, encompassing participants of different ages,
genders, and backgrounds, to ensure findings are representative and applicable to the
broader industrial workforce.

5.3. Technology and Hardware Constraints

Limitations related to technology and hardware are common concerns in the VR
research landscape. Variations in proprietary algorithms used for eye-tracking data ac-
quisition are also highlighted [20,22]. Bernal et al., and Peruzzini et al. [20,35] point out
complexities in system setup, integration issues, and the challenge of hardware obsoles-
cence. Dado et al. [57] mentions the use of software not specifically designed for training,
which can impact the effectiveness of VR experiences. Effective implementation of haptic
feedback also emerged as a challenge in several studies. Morosi and Caruso [26] discuss the
difficulties in achieving meaningful haptic feedback, emphasizing that different solutions
may lead to the same result, but their selection is not trivial.

It also happens that more and more devices are emerging with new features, such
as Apple’s recent announcement of the Apple Vision Pro [58], which already proposes a
hybridization between augmented and mixed reality. But this development is not only
happening with the approach of the technology itself, but with the features that allow for
the collection of more information from the user and in a not so invasive way. Up to now,
the testing itself has been conditioned by the intrusiveness of the measurement elements as
mentioned in Section 4.4. EEGs, IMUs, and other devices are extra elements that must be
added to the user, and this can hinder the execution of activities, hindering movements,
decreasing attention, etc. Different authors mention their concern about this issue and
seek a balance between optimal data collection and the level of intrusion of the person.
For example, the use of an invasive eye tracker which was very light and comfortable to
wear in some of the experiments [31]. Fortunately, this is changing, and as VR devices
continue to evolve, emerging technologies offer promising solutions to address many of
the challenges discussed.
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For instance, generative AI can enhance data collection and analysis by adapting envi-
ronments in real time, improving user experiences without requiring additional hardware.
Similarly, advancements in haptic technology aim to achieve more precise and realistic
tactile feedback, addressing the difficulties highlighted in system integration and meaning-
ful feedback design. Moreover, the increasing ability of non-invasive sensors embedded
in HMDs to track body movements, facial expressions, and voice data can reduce the
reliance on intrusive measurement tools like EEGs and IMUs. These developments not
only minimize user discomfort but also streamline data acquisition, allowing researchers to
balance accuracy and usability. Combined, these innovations mark a shift toward more
seamless, robust, and user-centered methods for evaluating VR systems.

5.4. VR Environment Tailoring

The imperative to tailor VR environments to the tasks is a concept gaining traction,
with the specificity of such customization being a decisive factor in the utility and effective-
ness of VR applications in industrial settings. Morosi and Caruso [26] have highlighted
the criticality of configuring VR experiences to support the exact nature of the tasks which
operators are required to perform. This customization ensures that the technological capa-
bilities of the VR system align closely with the cognitive and physical demands of these
tasks, enhancing both performance and user satisfaction.

Zhang et al. [46], further reinforce this notion by acknowledging the limitations of their
study, which was constrained to a single task and object. This admission points to a broader
recognition that the scope and transferability of findings in VR research are significantly
influenced by the extent to which the environment and tasks have been tailored. Such
specificity in VR environment tailoring is a practical application of the technology task fit
(TTF) model [59] which suggests that the effectiveness of technology is maximized when it
is closely aligned with the demands of the task.

For VR technologies to be most effective, they must be adaptable to a variety of tasks
and user scenarios. The development of VR systems should thus be informed by a thorough
analysis of the intended tasks, incorporating adaptability and customization into the design
process. A VR environment that is too rigid or narrowly focused may not offer the flexibility
required to accommodate diverse or evolving industrial tasks.

This implies that future research and development in VR should not only focus on
technological advancement but also on a deeper understanding of the tasks themselves.
This includes recognizing the complexity, interdependencies, and nuances of tasks to
ensure that VR systems provide relevant functionalities and interfaces that enhance task
performance. This approach would ensure that VR technologies are not only advanced in
their capabilities but are also relevant and effective tools that support users in achieving
their goals within the industrial context.

6. Limitations and Conclusions
In the context of this review, several limitations warrant careful consideration, such as

those which follow:
The systematic literature review (SLR) methodology, esteemed for its rigor, does not

guarantee the exhaustive identification of all publications within a specific research domain,
as evidenced by prior work. This inherent incompleteness is an acknowledged aspect of
the SLR process.

The deliberate decision to exclusively focus on peer-reviewed articles introduces
a notable limitation. By applying this, the potential exclusion of valuable case studies
presented at conferences arises, compromising the comprehensiveness of the study given
that conference case studies constitute a distinct and valuable source of insights.
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Despite conscientious efforts to maintain objectivity throughout the review process,
the possibility of introducing bias in certain instances is recognized as a challenge. This
is an inherent aspect of research endeavors of this nature, where subjective judgments
and interpretations may influence overall findings. The selection of databases, though
thoughtfully undertaken to encompass a broad spectrum of the research area, is not without
its limitations. While the inclusive search strategy aimed to capture a comprehensive range
of relevant literature, the possibility remains that additional databases could have revealed
more significant articles for inclusion, thereby enhancing the depth of the study.

In establishing quality assessment (QA) criteria, the choice of QA questions and the
setting of a QA threshold at three were strategic decisions. It is crucial to acknowledge that
alternative QA questions or a lower threshold could have yielded substantially different
outcomes in the SLR. However, the chosen QA criteria, along with the specified threshold,
contributed to the identification of a collection of high-quality papers, a determination
substantiated by the literature characterization.

A final limitation pertains to the decision to restrict results exclusively to publications
in English and Spanish. While this choice streamlines the review process, it introduces
a language restriction that may exclude valuable contributions in other languages. This
linguistic limitation poses a potential barrier to a more inclusive and diverse representation
of perspectives within the study.

In recognizing and addressing these limitations, we establish a clear understanding of
the study’s scope and constraints. This critical evaluation sets the stage for our conclusions,
where we synthesize the findings of the systematic literature review, offering valuable
insights into the assessment of human factors in industrial VR environments and identifying
opportunities for future research within the evolving landscape of Industry 5.0.

A key observation in this review underscores the lack of consistency in the taxonomy
of terms used to measure human factors. The terminology considered as human factors in
some studies is utilized as a metric in others. Additionally, the interdependencies between
factors and metrics are often unclear, partly due to the varied tools employed to classify
these elements.

The review further highlighted the prevalence of certain factors in experimental stud-
ies, with usability, workload, ergonomics, learnability, and user experience emerging as the
most frequently addressed factors. Usability featured the most associated metrics, espe-
cially those of cognitive and pragmatic nature. Notably, hedonic metrics were considerably
less prominent than pragmatic metrics, particularly in process and physiological categories.
Ergonomics tended to be assessed pragmatically, focusing on metrics related to physio-
logical characteristics. In the field of industrial VR experiences, researchers have delved
into uncovering correlations among diverse human factors. These studies illuminate the
intricate dynamics of user interactions, subjective responses, and physiological indicators
within immersive environments.

Although the rapid evolution of VR technology brings opportunities, it also brings
some challenges. The swift obsolescence of VR technology may result in compatibility
issues with older hardware and software used in research studies. Challenges persist
in achieving meaningful haptic feedback, and the intrusiveness of some data collection
methods, such as external devices like EEGs and IMUs, remains a concern. Researchers
should vigilantly assess and adapt to evolving VR technology and hardware, aiming
to minimize intrusiveness and enhance haptic feedback for a more realistic industrial
VR experience.
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The findings of this SLR, set against the backdrop of the imminent Industry 5.0 era,
highlight significant challenges and opportunities in industrial VR environments. Key
among these is the inconsistent use of terminology and metrics in measuring human fac-
tors, underscoring the need for standardization in this rapidly evolving field. This aligns
with Industry 5.0’s focus on integrating advanced technologies like VR while emphasiz-
ing human-centric approaches, leading to more efficient, inclusive, and human-centered
industrial environments.
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Appendix A
In this section, the three abovementioned tables are presented in full. Table A1 lists

the different devices identified in the literature, categorized accordingly. Table A2, on
the other hand, compiles all identified human factors, along with their respective metrics,
measurement units, and classified data collection methods.

Table A1. Devices used in the literature.

Type Main Device Extra Elements Category Ref.

CAVE CAVE

Wireless EEG device Biosensor
[33]

Microsoft Kinect Motion capture

Infrared cameras Motion capture
[20]BioHarness 3.0 Biosensor

Tobii Pro Eyeglasses 2 Biosensor

Microsoft Kinect Motion capture
[27]

ART Tracking Motion capture

Motion Capture System Motion capture
[35]

Joystick Controller
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Table A1. Cont.

Type Main Device Extra Elements Category Ref.

HMD (Head
mounted display)

HTC Vive [61]

Headphones Sound [34]

n/d (not defined) n/d [23]

Microsoft Kinect Motion capture [57]

n/d n/d [21]

HTC Vive Pro [62]
3D limb-sensing device with visual,

tactile and auditory simulation Physical/Haptic
[32]

Polar watch Biosensor

HTC Vive Pro Eye [63]

n/d n/d [22]

Headphones Sound [29]

Heart rate monitor Biosensor [30]

Empatica E4 Biosensor

[28]HTC Vive Trackers 3.0 Motion capture

BioHarness 3.0 Biosensor

Leap motion Motion capture
[19]

X Sens Motion capture

n/d Percepcion Neuron Pro suit Motion capture [45]

Oculus Quest 2 [64] Robotic arm Physical/Haptic [46]

Oculus Rift [65]

Tobii Pro eyeglasses II Biosensor [31]

Keyboard Controller [36]

Leap motion Motion capture

[26]5.1 surround Sound

Haptic master Physical/Haptic

Percepcion Neuron Lite Motion capture [44]

Eyetracker Biosensor
[41]

Microsoft Kinect Motion capture

Leap motion Motion capture [25]

n/d n/d [24]

PMU (physical mockup) Physical/Haptic [37]

Table A2. Human Factors, metrics classification and data collection methods.

Factor Metrics Hedonic vs.
Pragmatic Categories Unit of Measurement Technique/Data

Collection Method Paper

Acceptability Suitability Hedonic Cognitive Interview Interview [27]

Attention Gaze Hedonic Physiological Time per object Eye tracking data analysis [30]

Comfort

Brain Activity (Alpha) Hedonic Physiological ND (not defined) EEG [33]

Spatial properties Pragmatic Process
Self-generated
questionnaire
(1–5 and 1–10)

Questionnaire [33]

Aesthetic properties Pragmatic Process
Self-generated
questionnaire
(1–5 and 1–10)

Questionnaire [33]

Likeability Hedonic Cognitive
Self-generated
questionnaire
(1–5 and 1–10)

Questionnaire [33]
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Table A2. Cont.

Factor Metrics Hedonic vs.
Pragmatic Categories Unit of Measurement Technique/Data

Collection Method Paper

Effectiveness

Need of support Pragmatic Cognitive Number of times
asked for help User observation [20]

Workarounds created Pragmatic Process Number User observation [20]

Gaze Pragmatic Physiological Number Eye tracking data analysis [20]

Heat map (dimension
of the area with

visual interaction
Pragmatic Physiological Area (mm2) Eye tracking data analysis [20]

Average training time Pragmatic Process Time Manually stopwatch [44]

Average tutorial time Pragmatic Process Time Manually stopwatch [44]

Average assessment
time Pragmatic Process Time Manually stopwatch [44]

Effectiveness Pragmatic Process Subjective judge
(1–5 point scale) Questionnaire [41]

Efficiency

Task execution time Pragmatic Process Time Digital simulation
analysis [20]

Postural comfort Pragmatic Physiological

Comfort level
(1–7, 1–4, 1–11)

according to different
methods (RULA,
OWAS, REBA. . .)

Digital simulation
analysis [20]

Visibility Pragmatic Physiological Heuristic evaluation
of field of view (1–10)

Digital simulation
analysis [20]

Task execution time Pragmatic Process Time Manually stopwatch [37]

Assessment scores Pragmatic Process Score Manually stopwatch [44]

Task execution time Pragmatic Process Time Digital simulation
analysis [20]

Effort Perceived physical
exertion Pragmatic Physiological Borg RPE

(0–10 point scale) Questionnaire [37]

Ergonomics

Body position Pragmatic Physiological RULA score Position tracking [45]

Posture Pragmatic Physiological Time Reach envelope
(analysis option) [37]

Posture Pragmatic Physiological RULA score Questionnaire [37]

Musculoskeletal
symptoms Pragmatic Physiological Nordic questionnaire

(1–7 point scale) Questionnaire [37]

Postural overload Pragmatic Physiological RULA score Questionnaire [28]

Body part discomfort Pragmatic Physiological Body part discomfort
scale (1–5 point scale) Questionnaire [28]

Comfort Hedonic Physiological Subjective judge
(1–5 point scale) Questionnaire [44]

Posture Pragmatic Physiological
OWAS (Ovako

Working posture
Analyzing System)

Worksheet [19]

Comfort Hedonic Physiological REBA (Rapid Entire
Body Assessment) Worksheet [19]

Physical workload Pragmatic Physiological
EAWS (European

Assembly
Work-Sheet)

Worksheet [19]

Human performance
(Joint angles) Pragmatic Physiological DHM (Change

in posture) Motion capture [21]

Vision performance Pragmatic Physiological
Obscuration zone
analysis (% area of

vision blocked)
Computing [21]
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Table A2. Cont.

Factor Metrics Hedonic vs.
Pragmatic Categories Unit of Measurement Technique/Data

Collection Method Paper

Game
Experience

Competence Pragmatic Cognitive
GEQ

(Game Engagement
Questionnaire 0–4)

Questionnaire [35]

Sensory and
imaginative
immersion

Pragmatic Cognitive
GEQ

(Game Engagement
Questionnaire 0–4)

Questionnaire [35]

Flow Pragmatic Cognitive
GEQ

(Game Engagement
Questionnaire 0–4)

Questionnaire [35]

Tension-Annoyance Pragmatic Physiological
GEQ

(Game Engagement
Questionnaire 0–4)

Questionnaire [35]

Challenge Pragmatic Cognitive
GEQ

(Game Engagement
Questionnaire 0–4)

Questionnaire [35]

Negative affect Hedonic Cognitive
GEQ

(Game Engagement
Questionnaire 0–4)

Questionnaire [35]

Positive affect Hedonic Cognitive
GEQ

(Game Engagement
Questionnaire 0–4)

Questionnaire [35]

Positive Experience Hedonic Cognitive
GEQ

(Game Engagement
Questionnaire 0–4)

Questionnaire [35]

Negative Experience Hedonic Cognitive
GEQ

(Game Engagement
Questionnaire 0–4)

Questionnaire [35]

Tiredness Pragmatic Physiological
GEQ

(Game Engagement
Questionnaire 0–4)

Questionnaire [35]

Returning to reality Pragmatic Cognitive
GEQ

(Game Engagement
Questionnaire 0–4)

Questionnaire [35]

Immersion
Immersion Pragmatic Cognitive Subjective judge

(1–5 point scale) Questionnaire [44]

Immersion Pragmatic Cognitive Self generated
questionnaire (0–7) Questionnaire [27]

Learnability

Task execution
accuracy Pragmatic Process Score (anova

comparison) Assessment/Exam [36]

Task execution
accuracy Pragmatic Process mm Comparative: optimal

vs. result [34]

Task execution time Pragmatic Process Time Manually-stopwatch [34]

Difficulties in
understanding or

execution
Pragmatic Process Number of times

asked for help
User observation

(video recordings) [24]

Ease of use Pragmatic Process Likert scale (1–7) Questionnaire [24]

Errors Pragmatic Process Number User observation
(video recordings) [24]

Intention of use Hedonic Cognitive Likert scale (1–7) Questionnaire [24]

Motivation in the
learning process Hedonic Cognitive Likert scale (1–7) Questionnaire [24]

Other anomalies Other Other ND User observation
(video recordings) [24]
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Table A2. Cont.

Factor Metrics Hedonic vs.
Pragmatic Categories Unit of Measurement Technique/Data

Collection Method Paper

Learnability

Subjective assessment
of the learning success Hedonic Cognitive Likert scale (1–7) Questionnaire [24]

Task execution time Pragmatic Process Time User observation
(video recordings) [24]

Technology
acceptance Hedonic Cognitive TAM (Technology

Acceptance Model) Questionnaire [24]

Usefulness Hedonic Cognitive Likert scale (1–7) Questionnaire [24]

Potential for VR
training development Hedonic Cognitive Subjective judge

(1–5 point scale) Questionnaire [44]

Learnability Pragmatic Cognitive
QUIS (Questionnaire

for User Interface
Satisfaction) (0–9)

Questionnaire [27]

Learnability/
Conceptual

understanding
Learnability Pragmatic Cognitive Knowledge of

learning objectives Assessment/Exam [23]

Learnability/
Self efficacy

Ability to understand
and explain
the concepts

Hedonic Cognitive Subjective judge
(1–5 point scale) Questionnaire [23]

Familiarity with and
comfort in applying

the concepts
Hedonic Cognitive Subjective judge

(1–5 point scale) Questionnaire [23]

Memorability

Task execution
accuracy Pragmatic Process mm Comparative: optimal

vs. result [34]

Task execution time Pragmatic Process Time Manually stopwatch [34]

Number of repetitions
of the training Pragmatic Process Number Counter [34]

Task execution time Pragmatic Process Time Manually stopwatch [34]

Mental
workload

Electrodermal activity Pragmatic Physiological ND EDA Monitor [28]

Heart rate Pragmatic Physiological Time Heart Rate Monitor
thoracic band [28]

Pupillometry Pragmatic Physiological Pupil size
variation/time Eye tracking data analysis [28]

Performance

Number of Errors Pragmatic Process Percentage of
wrong answers User observation [22]

Task execution time Pragmatic Process Time Software/video [22]

Errors Pragmatic Process Number 3D position and trajectory [26]

Task execution time Pragmatic Process Time Manually stopwatch [26]

Task execution time Pragmatic Process Time Software/video [30]

Presence

Realism Hedonic Process
Witmer and Singer

presence questionnaire
adaptation scale (1–7)

Questionnaire [46]

Possibility to act Pragmatic Process
Witmer and Singer

presence questionnaire
adaptation scale (1–10)

Questionnaire [46]

Self-evaluation of
performance Pragmatic Process

Witmer and Singer
presence questionnaire
adaptation scale (1–10)

Questionnaire [46]

Haptic Pragmatic Physiological
Witmer and Singer

presence questionnaire
adaptation scale (1–10)

Questionnaire [46]
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Risk detection

Number of
hazards identified Pragmatic Process Number Assessment/Exam [57]

Number of correct
hazards identified Pragmatic Process Number Assessment/Exam [57]

Safety Workplace safety Pragmatic Process APACT check list
(0–10 point scale) Checklist [37]

Satisfaction

Subjective visibility
(can you properly

see everything
you need?)

Pragmatic Physiological Subjective judge
(1–5 point scale) Questionnaire [29]

Accessibility (can
you properly

reach everything
you need?)

Pragmatic Physiological Subjective judge
(1–5 point scale) Questionnaire [29]

Mental demand Pragmatic Cognitive Subjective judge
(1–5 point scale) Questionnaire [29]

Emotional (Is the
stress to accomplish

the task appropriate?)
Hedonic Cognitive Subjective judge

(1–5 point scale) Questionnaire [29]

Perceived comfort (Are
you feeling in a

comfortable position?)
Hedonic Physiological Subjective judge

(1–5 point scale) Questionnaire [20]

Situational Risk

Anxiety Hedonic Cognitive
State-Trait_anxiety
Inventory (STAI-S)

(8 point Likert scale)
Questionnaire [29]

Hesitation time Pragmatic Process Time Manually stopwatch [29]

Caution time (time
spent outside of the

expected zone)
Pragmatic Process Time Manually stopwatch [29]

Valence Hedonic Cognitive
SAM (Self

Assessment Manikin)
(9 point scale)

Questionnaire [29]

Arousal Hedonic Cognitive
SAM (Self

Assessment Manikin)
(9 point scale)

Questionnaire [29]

Difficulty stepping
out Pragmatic Cognitive

Self-generated
survey/questionnaire

(Likert scale)
Questionnaire [29]

Avoidance falling off Pragmatic Cognitive
Self-generated

survey/questionnaire
(Likert scale)

Questionnaire [29]

Dared to step off Hedonic Cognitive
Self-generated

survey/questionnaire
(Likert scale)

Questionnaire [29]

Feel risk Hedonic Cognitive
Self-generated

survey/questionnaire
(Likert scale)

Questionnaire [29]
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Stress level

Mental demand Pragmatic Cognitive NASA-TLX
Scale (1–10) Questionnaire [26]

Physical demand Pragmatic Physiological NASA-TLX
Scale (1–10) Questionnaire [26]

Temporal demand Pragmatic Process NASA-TLX
Scale (1–10) Questionnaire [26]

Performance Pragmatic Process NASA-TLX
Scale (1–10) Questionnaire [26]

Effort Pragmatic Physiological NASA-TLX
Scale (1–10) Questionnaire [26]

Frustration Hedonic Cognitive NASA-TLX
Scale (1–10) Questionnaire [26]

Total workload Pragmatic Process NASA-TLX
Scale (1–10) Questionnaire [26]

Heart rate Pragmatic Physiological Bpm Heart rate monitor [26]

Electrodermal activity Pragmatic Physiological ND EDA Monitor [28]

Inter-beat
intervals (heart) Pragmatic Physiological Time Heart rate monitor

thoracic band [28]

Suitability and
Relevance of

use

Suitability and
relevance of use Pragmatic Cognitive Interview Interview [27]

Terminology Terminology Pragmatic Process
QUIS (Questionnaire

for User Interface
Satisfaction) (0–9)

Questionnaire [27]

Undefined

Immersion Hedonic Cognitive Self-generated
questionnaire Questionnaire [26]

Understanding of the
task and simplicity

to manipulate
Hedonic Process Self-generated

questionnaire Questionnaire [25]

Graphic quality Pragmatic Process Self-generated
questionnaire Questionnaire [26]

Motion sickness Pragmatic Physiological Self-generated
questionnaire Questionnaire [26]

Learnability Pragmatic Cognitive Self-generated
questionnaire Questionnaire [25]

Confidence Hedonic Cognitive Subjective judge
(1–5 point scale) Questionnaire [44]

Enjoyment Hedonic Cognitive Subjective judge
(1–5 point scale) Questionnaire [44]

Control of virtual
objects Hedonic Process Subjective judge

(1–5 point scale) Questionnaire [44]

Realism Hedonic Process Subjective judge
(1–5 point scale) Questionnaire [44]

Usability

Ease of movement Pragmatic Physiological
Self-generated

survey/questionnaire
(Likert scale)

Questionnaire [26]

Readability of the text Pragmatic Process
Self-generated

survey/questionnaire
(Likert scale)

Questionnaire [26]

Ability to control
the machine Pragmatic Cognitive

Self-generated
survey/questionnaire

(Likert scale)
Questionnaire [26]

Instructional
understanding Pragmatic Cognitive

Self-generated
survey/questionnaire

(Likert scale)
Questionnaire [26]
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Usability

Realism Pragmatic Process
Self-generated

survey/questionnaire
(Likert scale)

Questionnaire [26]

Ease of use Pragmatic Cognitive
Self-generated

survey/questionnaire
(Likert scale)

Questionnaire [26]

Positive and
negative comments Hedonic Cognitive

Self-generated
survey/questionnaire

(Likert scale)
Questionnaire [36]

Likeability Hedonic Cognitive SUS Scale (1–5) Questionnaire [27,34,35,46]

Complexity Pragmatic Cognitive SUS Scale (1–5) Questionnaire [27,34,35,46]

Ease of use Pragmatic Cognitive SUS Scale (1–5) Questionnaire [27,34,35,46]

Need of support Pragmatic Cognitive SUS Scale (1–5) Questionnaire [27,34,35,46]

Integration Hedonic Process SUS Scale (1–5) Questionnaire [27,34,35,46]

Inconsistency Pragmatic Process SUS Scale (1–5) Questionnaire [27,34,35,46]

Learnability Pragmatic Cognitive SUS Scale (1–5) Questionnaire [27,34,35,46]

Cumbersomeness Pragmatic Cognitive SUS Scale (1–5) Questionnaire [27,34,35,46]

Confidence Pragmatic Cognitive SUS Scale (1–5) Questionnaire [27,34,35,46]

Previous knowledge. Pragmatic Cognitive SUS Scale (1–5) Questionnaire [27,34,35,46]

Fixation Pragmatic Physiological Eye tracking
data analysis Eye tracking data analysis [26]

Saccade Pragmatic Physiological ND Eye tracking data analysis [26]

Visibility Pragmatic Physiological
Self-generated

survey/questionnaire
(Likert scale)

Questionnaire [26]

Similitude Hedonic Process
Self-generated

survey/questionnaire
(Likert scale)

Questionnaire [26]

User control Pragmatic Process
Self-generated

survey/questionnaire
(Likert scale)

Questionnaire [26]

Consistency and
standards Pragmatic Process

Self-generated
survey/questionnaire

(Likert scale)
Questionnaire [26]

Error prevention Pragmatic Process
Self-generated

survey/questionnaire
(Likert scale)

Questionnaire [26]

Preference Pragmatic Cognitive
Self-generated

survey/questionnaire
(Likert scale)

Questionnaire [26]

Flexibility Pragmatic Process
Self-generated

survey/questionnaire
(Likert scale)

Questionnaire [26]

Aesthetic properties Hedonic Process
Self-generated

survey/questionnaire
(Likert scale)

Questionnaire [26]

User help Pragmatic Process
Self-generated

survey/questionnaire
(Likert scale)

Questionnaire [26]

Documentation Pragmatic Process
Self-generated

survey/questionnaire
(Likert scale)

Questionnaire [26]

Task execution time Pragmatic Process Time Manually-stopwatch [26]



Information 2025, 16, 35 31 of 34

Table A2. Cont.

Factor Metrics Hedonic vs.
Pragmatic Categories Unit of Measurement Technique/Data

Collection Method Paper

Usability

Task adaptation time
(time needed to adapt

to the task before
executing it)

Pragmatic Process Time Manually-stopwatch [41]

User
Experience

Attractiveness Hedonic Cognitive

UEQ (User
Experience

Questionnaire Short
Version (−3,3)

Questionnaire [26]

Efficiency Pragmatic Process

UEQ (User
Experience

Questionnaire Short
Version (−3,3)

Questionnaire [26]

Comprehensibility Pragmatic Cognitive

UEQ (User
Experience

Questionnaire Short
Version (−3,3)

Questionnaire [26]

Reliability Pragmatic Process

UEQ (User
Experience

Questionnaire Short
Version (−3,3)

Questionnaire [26]

Stimulation Pragmatic Cognitive

UEQ (User
Experience

Questionnaire Short
Version (−3,3)

Questionnaire [26]

Novelty Hedonic Cognitive

UEQ (User
Experience

Questionnaire Short
Version (−3,3)

Questionnaire [24]

Amount of
responsibility Hedonic Cognitive Subjective judge

(1–5 point scale) Questionnaire [28]

Physical demand Pragmatic Physiological Subjective judge
(1–5 point scale) Questionnaire [28]

Mental stress Hedonic Cognitive Subjective judge
(1–5 point scale) Questionnaire [28]

Attention required Pragmatic Cognitive Subjective judge
(1–5 point scale) Questionnaire [28]

Interruptions or
spare time Pragmatic Process Subjective judge

(1–5 point scale) Questionnaire [28]

User
Participation

Brain effective
connectivity Pragmatic Physiological Rate of

perceived exertion

fNIRS (Near-
infrarred spectroscopy)

+ polar watch
[32]

User Preference Participant’s overall
preference Hedonic Cognitive Subjective ranking

of elements Questionnaire [46]

Workload

Fixation Pragmatic Physiological ND Eyetracking data analysis [31]

Saccade Pragmatic Physiological ND Eyetracking data analysis [31]

Mental demand Pragmatic Cognitive NASA-TLX
Scale (1–10) Questionnaire [21,22,26,28,

31,37]

Physical demand Pragmatic Physiological NASA-TLX
Scale (1–10) Questionnaire [21,22,26,28,

31,37]

Temporal demand Pragmatic Process NASA-TLX
Scale (1–10) Questionnaire [21,22,26,28,

31,37]

Performance Pragmatic Process NASA-TLX
Scale (1–10) Questionnaire [21,22,26,28,

31,37]

Effort Pragmatic Physiological NASA-TLX
Scale (1–10) Questionnaire [21,22,26,28,

31,37]
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Workload

Frustration Hedonic Cognitive NASA-TLX
Scale (1–10) Questionnaire [21,22,26,28,

31,37]

Total workload Pragmatic Process NASA-TLX
Scale (1–10) Questionnaire [21,22,26,28,

31,37]

Pupillometry Pragmatic Physiological Pupil size
variation/time Eye tracking data analysis [22]

Perception of the
visual feedback Hedonic Cognitive

Witmer and Singer
presence

questionnaire
adaptation
scale (1–10)

Questionnaire [26]

Perception of the
auditory feedback Hedonic Cognitive

Witmer and Singer
presence

questionnaire
adaptation
scale (1–10)

Questionnaire [26]

Perception of the
haptic feedback Hedonic Cognitive

Witmer and Singer
presence

questionnaire
adaptation
scale (1–10)

Questionnaire [26]
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