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Discovering Predictive Relational Object Symbols
With Symbolic Attentive Layers

Alper Ahmetoglu , Member, IEEE, Batuhan Celik , Erhan Oztop , Member, IEEE, and Emre Ugur

Abstract—In this letter, we propose and realize a new deep
learning architecture for discovering symbolic representations for
objects and their relations based on the self-supervised continuous
interaction of a manipulator robot with multiple objects in a table-
top environment. The key feature of the model is that it can take
a changing number of objects as input and map the object-object
relations into symbolic domain explicitly. In the model, we employ a
self-attention layer that computes discrete attention weights from
object features, which are treated as relational symbols between
objects. These relational symbols are then used to aggregate the
learned object symbols and predict the effects of executed actions
on each object. The result is a pipeline that allows the formation
of object symbols and relational symbols from a dataset of object
features, actions, and effects in an end-to-end manner. We compare
the performance of our proposed architecture with state-of-the-art
symbol discovery methods in a simulated tabletop environment
where the robot needs to discover symbols related to the relative
positions of objects to predict the action’s result. Our experiments
show that the proposed architecture performs better than other
baselines in effect prediction while forming not only object symbols
but also relational symbols.

Index Terms—Developmental robotics, learning categories and
concepts, deep learning methods.

I. INTRODUCTION

L EARNING the symbolic representation of tasks enables
the application of classical AI search techniques to find a

solution in the symbolic definition of the task. For well-defined
environments, symbolic systems can be manually designed to
describe robot-environment interactions. However, such manual
designs would only be scalable to a handful of domains and re-
quire significant work to adapt to new environments. On the other
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hand, learning the required symbols for the task from data would
be a more scalable and generalizable strategy to achieve truly
intelligent robots [1]. Therefore, there is a considerable amount
of research on how to convert the sensorimotor experience of a
robotic agent into symbolic representations [2].

One prominent strategy for learning the necessary symbols
is to partition the precondition and the effect set of the agent’s
actions and learn classifiers for these partitions [3], [4], [5]. This
ensures that the learned symbols are compatible with the actions
available to the agent and filters out irrelevant aspects of the envi-
ronment that the agent cannot manipulate. Learning symbols can
also be formalized as compressing the state-space into symbolic
state-space with autoencoders [6], [7], [8]. Operators, which are
high-level actions manipulating these symbols, can be learned
simultaneously or separately. One of the main advantages of
this approach is that symbols are learned with deep neural
networks, which opens up the possibility of integrating other
deep architectures to the learning pipeline, such as convolutional
layers to process images, to improve the quality of the learned
representations. However, the advantage of deep architectures
is usually conditional on the amount of data available, which
is especially critical in robotics applications. Therefore, it is
important to use deep architectures only for parts of a system
that can benefit from them.

Our previous work, DeepSym [9], combines these two moti-
vations: learning preconditions and effects of actions with deep
neural networks. In DeepSym, an encoder-decoder network with
a discrete bottleneck layer is trained to predict the effect of
actions (Fig. 1 – bottom left). However, the network can only
handle a fixed number of object interactions, restricting the types
of relations that can be learned. This restriction is lifted in a more
recent work [10] by introducing a self-attention mechanism [11]
to the architecture (Fig. 1 – bottom right). As symbols interact
with each other using self-attention, the network can make
accurate predictions for related objects (e.g., on top of each
other). Although this architecture is effective in making accurate
predictions for related objects through the learned multi-object
symbols, it does not reveal the explicit relations between objects.
Furthermore, as the self-attention layer is applied after dis-
cretization, the relational representational capacity of the model
is limited by the learned symbols.

In the current work, we explicitly compute discrete self-
attention weights from object features and treat them as rela-
tional symbols between objects. Using these discrete relations,
we fuse object symbols in an aggregation function to produce
a single representation for each object, which is then used to
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Fig. 1. Proposed model is shown in the top panel. The object and the relational encoders take object features as input and process them in parallel. The object
encoder outputs an object symbol zi for the object oi, and relational encoder outputs the query vector qi and the key vector ki which are used as in (3) to calculate
relational symbols. For comparison, we also provide high-level outlines of [9] and [10] in the bottom panel in (ii) and (iii), respectively.

predict the observed, potentially multi-object, effect. This results
in a more powerful architecture, which we named Relational
DeepSym, that can explicitly output the relations between a
varying number of objects while enjoying other properties of
DeepSym. Our experiments in a simulated tabletop scenario
show that (1) Relational DeepSym achieves lower errors than [9]
and [10] for different numbers of objects and actions, (2) learns
not only object symbols but also relational symbols.

II. RELATED WORK

Early symbol grounding studies in robotics (e.g., [12], [13])
assumed the existence of manually defined symbols that were
effective in plan generation. These studies collected data from
interactions of agents and robots and learned sensor-to-symbol
mappings to ground the pre-defined symbols in the sensorimotor
experience of the robot. In these studies, transition rules, which
are connected by symbolic preconditions and effects, were de-
fined, and the continuous experience of the robot was used to
map the manually defined symbolic predicates to the continuous
perceptual space of the robots. Recently, [14] proposed a deep
neural network architecture based on Convolutional Variational
Auto-Encoders to discover visual features that are well-suit for
pre-defined recognition and interaction tasks. [15] used Multi-
modal Latent Dirichlet Allocation (MLDA) to learn the mapping
between multi-modal sensory experience and preconditions and
post-conditions of actions of a robot. We argue that pre-defining
symbols in unknown and changing environments is not possible,
and as stated by [16], symbols should instead “be formed in

relation to the experience of agents, through their percep-
tual/motor apparatuses, in their world and linked to their goals
and actions”.

Unsupervised discovery of discrete symbols and rule learn-
ing from the continuous sensorimotor experience of embodied
agents has been recently studied in robotics in order to equip
robots with advanced reasoning and planning capabilities [1],
[2]. [17] investigated the discovery of sub-symbolic neural acti-
vations that facilitate resource economy and fast learning in skill
transfer but did not address high-level reasoning with discrete
symbols. [3], [18] discovered symbols that were directly used
as predicates in precondition and post-condition fields of action
descriptors, represented in Problem Domain Definition Lan-
guage (PDDL). This encoding allowed for making deterministic
and probabilistic plans in 2-dimensional agent environments.
The same architecture was extended to a real-world robotic
environment in [4], where symbols representing absolute global
states were learned and used for planning. [19], on the other
hand, learned egocentric symbolic representations that enabled
the agents to transfer the previously learned symbols to novel
environments directly. [20] considers learning symbols from
object-centric observations, allowing for a transfer between
tasks that share the same types of objects. Effect clustering
techniques and SVM classifiers were used to discretize the
continuous sensorimotor experience of the agents in these works.

Whereas the previous work addressed learning symbols from
given skills, [21], [22], [23], [24], [25] learned a set of skills
from a set of symbolic predicates and a collection of demon-
strations. [26] considered only the necessary changes in the
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predicate set for more compact operators. In follow-up
work, [27] used a surrogate objective for learning state abstrac-
tions that increase planning performance. [5], [28] discovered
discrete symbols and used these symbols in order to generate
PDDL rules for planning by again combining effect clustering
techniques to find discrete effect categories and SVM classifiers
to discretize continuous object feature space. These studies used
ad-hoc combinations of several machine learning methods. On
the other hand, [9] provided a more generic symbol formation
engine, which used a novel deep network architecture that runs
at the pixel level and relies on purely predictive mechanisms in
forming symbols instead of unsupervised clustering techniques.
They used an effect predictor encoder-decoder network that took
the object image and action as input and exploited a binary
bottleneck layer to automatically form object categories. Similar
to this work, [6], [7], [8] also exploited deep neural networks
with binary bottleneck units to find discrete state and effect
symbols and achieve plan generation using these symbols. [29],
[30] model multi-object dynamics using graph neural networks
and predict object relations with a recurrent architecture. Sim-
ilarly, [31] learns a latent state-space in a graph structure and
a transition function that can predict object relations between
objects after an action execution given the graph.

Our work differs from previous research as we propose a new
method for learning symbolic representations of objects and
relations between them in a unified architecture. Most related
to [10] that also uses self-attention to model relational informa-
tion, our model differs in that it explicitly outputs the relations
between objects. In contrast, in [10], the learned relations are
opaque to the user.

III. METHODS

The problem definition and our assumptions are given in
Section III-A, the proposed model is explained in Section III-B,
and the differences with previous DeepSym architectures are
discussed in Section III-C.

A. Problem Definition

This work deals with the problem of learning symbolic rep-
resentations of objects and relations between them from con-
tinuous state representations collected by a robot to predict the
effect of its actions. From a developmental learning perspective,
this study starts off with a basic sensorimotor system [32], [33],
where the robot can locate objects, and pick and place them on
top of each other.

We consider an environment represented by a set of object
features O = {o1, . . . , on} where oi ∈ Rdo is a do-dimensional
continuous-valued vector for the ith object’s features and n is
the number of objects which can vary through multiple environ-
ment instances. Without any loss of generality, we define object
features as the combination of (1) the object type (e.g., short
block, long block), (2) the position (x, y, z) and the orientation
(x, y, z, w) of the object, resulting in a total of 8 dimensions
for each object. However, the method can be applied to any
other modality type (e.g., images, point clouds) by modifying

Fig. 2. Example interaction with the environment. Two objects are selected
as pick and place targets. Green and red arrows show possible grasp and re-
lease locations, respectively. (a) pick-place(o3,−1, o0, 0). (b) An example
effect.

the networks accordingly as long as the environment state can
be partitioned into a set of objects.

In our experiments, the robot has a single type of
high-level action with different parameterizations: pick-
place(oi,Δyi, oj ,Δyj) where oi and oj are the object to be
picked up and the target object, respectively, and Δyi and Δyj
are the y-axis pick and release positions relative to the center of
the object (Fig. 2(a)). Δyi and Δyj can take discrete values of
{−1, 0, 1} which correspond to 7.5 cm left, center, and 7.5 cm
right of the object center, respectively. This results in a total
of 9n2 grounded actions (i.e., actions with parameters) for n
objects. The robot randomly picks a grounded action, executes
it in the environment, and observes the new environment state
as O′ = {o′1, . . . , o′n} where o′i ∈ Rdo is the new object features
for the ith object.

The goal is to transform the state vector O = {o1, . . . , on}
where each oi ∈ Rdo is a feature vector describing object i into
a set of object symbolsZ = {z1, . . . , zn} and relational symbols
Rk = {r(k)11 , . . . , r

(k)
nn } where zi ∈ {0, 1}dz is a dz-dimensional

binary vector (i.e., an object symbol) for the ith object and
r
(k)
ij ∈ {0, 1} is a binary value for the kth relation between the
ith and jth objects. Once we have a symbolic representation Z,
R of a given state O, we can transform the continuously repre-
sented interaction data {O(i), a(i), O′(i)}Ni=1 into its symbolic
counterpart, {(Z(i), R(i)), a(i), (Z ′(i), R′(i))}Ni=1, and learn a
set of symbolic transition rules (Z,R)

a→ (Z ′, R′) enabling
domain-independent planning with AI planners to achieve a goal
state [3], [5], [6], [9], [21].

To learn object symbols and relations between objects, we
follow the objective in [5], [9], [10] and train a model to predict
the effect E = {e1, . . . , en} of the executed action a where
ei = δ(o′i, oi) is defined as the cartesian position difference be-
tween o′i and oi before and after the execution of the action a. In
our experiments, we compare the effect prediction performance
of the proposed model with two related models [9], [10] in a
simulated tabletop environment.

B. Relational DeepSym

The top panel in Fig. 1 shows a high-level overview of the
proposed model. The model consists of four main components:

Authorized licensed use limited to: ULAKBIM UASL - Bogazici Universitesi. Downloaded on October 14,2024 at 11:45:32 UTC from IEEE Xplore.  Restrictions apply. 



1980 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 2, FEBRUARY 2024

(1) an object encoder fo that learns object symbols, (2) a rela-
tional encoder fr that learns relational symbols between objects
(3) an aggregation function that combines information from
multiple objects by multiplying object symbols with relational
symbols, and (4) a decoder g that predicts effect ei of the
executed action a for each object i. As the whole architecture is
differentiable and trained in an end-to-end fashion to minimize
the effect prediction error, we expect the object and the relational
encoders to learn to predict symbols and relations useful for the
decoder to predict the effect.

The object encoder fo outputs a binary vector zi for the ith
object given its features oi:

zi = fo(oi) (1)

To output a discrete vector without removing the differentiabil-
ity, the activation of the last layer is set to the Gumbel-sigmoid
function [34], [35]. The Gumbel-sigmoid function approximates
a Bernoulli distribution by injecting noise drawn from Gumbel
distribution to the logits, which forces the model to output in
the extremities (i.e., either very low or very high values) to send
a signal in the presence of noise. In our experiments, fo is a
multi-layer perceptron; however, other differentiable architec-
tures can be used for different modalities (e.g., convolutional
layers to process images)

The relational encoder takes object features {o1, o2, . . . , on}
as input and processes them independently to output query and
key vectors {(q1, k1), (q2, k2), . . . , (qn, kn)} for each object.
Let Q and K be n× d matrices, each row containing a query
vector qi and a key vector ki, respectively. The attention weights
R, which are relational symbols in our case, are computed as
follows:

qi, ki = fr(oi) ∀i ∈ {1, 2, . . . , n} (2)

R = GumbelSigmoid

(
QKT

√
d

)
(3)

where d is the dimensionality of the query and key vectors. This
is slightly different from the regular self-attention function [11]
in which the softmax function is used instead of the Gumbel-
sigmoid function. This modification creates two different be-
haviors: (1) the use of a sigmoid function instead of a softmax
function allows multiple attention weights to different objects
to be active at the same time (whereas in softmax, attentions
compete with each other), and (2) the use of the Gumbel-sigmoid
function discretizes the attention weights while preserving dif-
ferentiability, allowing us to treat the weights as relational
symbols between objects. As in the object encoder, the relational
encoder is a multi-layer perceptron with two different outputs for
the query and the key. Note that multiple heads R1, R2, . . . , Rk

can be used to model different relations between objects.
In the third step, the aggregation function combines

object symbols {z1, z2, . . . , zn}, relational symbols
{R1, R2, . . . , Rk}, and the executed action a to produce a
single representation for each object. The aggregation function
has the following steps:

ai = [(1,Δyi)oi=pick, (1,Δyi)oi=place] (4)

z̄i = MLP(zi, ai) (5)

Hj = RjZ̄ (6)

H = (H1, H2, . . . , Hk) (7)

for i ∈ {1, . . . , n} and j ∈ {1, . . . , k}where object symbols and
the action vector are concatenated in (5), and the aggregation
occurs in (6). To concatenate action-specific information to each
object symbol zi in a permutation-invariant way, we define a
4-dimensional vector ai (4) for each object i in which the first
and the third dimensions are set to 1 if object i is the picked
or placed object, respectively. For example, consider the action
in Fig. 2(a), pick-place(o3,−1, o0, 0), which translates as
“pick up o3 from its left and place it on top of o0”. Here, a3 and
a0 are set to [1,−1, 0, 0] and [0, 0, 1, 0], respectively, and a1 and
a2 are set to zero vectors.

One can possibly aggregate the input multiple times by ap-
plying (6) more than once to model longer effect chains. In
our experiments, we use a single aggregation step. Multiple
combinations from multiple attention heads are concatenated
in (7) to produce a single representation hi for each object.

As the final step, the decoder takes the aggregated represen-
tation hi as input and predicts the effect ê for each object for the
executed action a. The decoder is a multi-layer perceptron. The
predicted effect is then compared with the ground truth effect e
to compute the mean squared error:

L =
1

M

M∑
j=1

N∑
i=1

(ê
(j)
i − e

(j)
i )2 (8)

where M is the batch size, and N is the number of objects.

C. Comparison With Related Models

As in DeepSym (Fig. 1 – bottom left), this architecture is also
an encoder-decoder architecture with discrete bottleneck layers.
The difference is that the information between objects is shared
in the aggregation function using the learned attention weights
for a more accurate effect prediction for actions involving several
objects. In DeepSym, this can only be achieved by fixing the
number of input objects, whereas there is no such limitation in
the proposed model.

Regarding the architecture in [10] (Fig. 1 – bottom right), the
most significant difference is the placement of the self-attention
module. In [10], the self-attention module takes object sym-
bols (the encoder’s output) as its input and directly outputs
the aggregated representation. This restricts the model from
learning attention weights only from the learned symbols. In
this proposal, attention weights are learned from object features,
making relations more general.

The second significant difference is the explicit use of atten-
tion weights. In [10], attention weights are used within the self-
attention layer as in the original Transformer architecture [11].
However, since attention weights are continuous, they cannot be
easily expressed as relational symbols between objects.
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IV. EXPERIMENTS

A. Experiment Setup

1) Environment: We created a tabletop object manipulation
environment for our experiments (Fig. 2). The environment
consists of a UR10 robot and two to four objects. These ob-
jects are either short blocks or long blocks with their physical
properties (e.g., size, mass, the friction coefficient) fixed through
the interaction phase. The robot has a single type of high-level
action: grasping and releasing an object on top of or near another
object. We assume that object positions can be recognized by a
separate module, and the robot can track the cartesian position
change of these objects. What is to be learned is the effect of the
executed action on each object in different configurations.

In our experiments, we first collect a fixed-size dataset re-
quired for the training by interacting with the environment and
then train the model. Note that this procedure can be turned into
a buffer-based training where the model training and the data
collection are done in parallel, similar to many reinforcement
learning setups.

2) Data Collection: At each iteration of the exploration
process, the robot picks a grounded action a, i.e., a specific
parameterization of the action such as pick-place(2, −7.5,
1, 0.0), and executes it in the environment to observe effect
ei of action a on each object i. Object features before the
execution of the action are recorded as the state vector. Here,
object features are object types and poses with respect to the
object frame that is going to be picked, which allows mod-
els to generalize to different object positions. Effects are the
concatenation of (1) the position change of objects after the
pick-up action, and (2) the position change of objects after the
release action: ei = [δ(o′pick

i , opick
i ), δ(o′place

i , oplace
i )] resulting in

a 6-dimensional vector for each object (Fig. 2(b)). Such an
effect representation filters out the movement effect of the object
from the source location to the target location. In this way,
the effect representation models what happens ‘immediately
after the pick-up’ and ‘immediately after the release’ actions.
Object and effect representations might have been selected as
raw images as in [9], [10]; however, we opt for a simpler setup
to compare different architectures in a controlled environment.

To compare different architectures in different settings, we
collected three datasets that contain exactly two, three, or four
objects. We combine these datasets to create a fourth dataset
that contains a varying number of objects. Each dataset contains
({o1, o2, . . . , on}, a, {e1, e2, . . . , en}) triplets where n is the
number of objects. We collect 120 K samples for two objects,
180 K for three objects, and 240 K for four objects. We use 80%
of samples for training, 10% for validation, and 10% for testing.

3) Baselines: We compare our method with [9] and [10]. As
the vanilla DeepSym architecture requires a fixed-size input and
output, we modified it to make it suitable for our experiments.
Namely, a maximum number of objects is determined for a
given training session. Then, the input (and the output) vector is
reshaped into [ograsped, oreleased, orest] where ograsped and oreleased

are the object features of the grasped and released objects,
respectively, and orest is the object features of the remaining
objects.

TABLE I
EFFECT PREDICTION RESULTS FOR DIFFERENT METHODS

4) Training Details: All architectures are trained with the
same hyperparameters throughout the text unless mentioned
otherwise. We train models for 4000 epochs with five repetitions
with different seeds. Adam optimizer [36] is used with a batch
size of 128 and a learning rate of 0.0001. All network compo-
nents (e.g., encoder, decoder) consist of two hidden layers with
128 hidden units. The number of attention heads for attentive
models is set to four. We clip gradients by their norm to 10. Ex-
tended experimental details (training logs, layer gradients, and
other training options) can be found at Weights & Biases1 [37].

B. Effect Prediction Results

Firstly, we compare effect prediction results for different
datasets in Table I2. The reported results are absolute errors
summed over all dimensions (three dimensions for the pick-up
effect and three dimensions for the release effect). The results
show that the proposed method achieves significantly lower
errors than others. Moreover, the variance is lower than others,
indicating that Relational DeepSym is more robust to different
seeds.

Errors increase as the number of objects increases. This is
expected since the number of unique effects increases with the
number of objects as the robot creates more complex structures
in random exploration. Choosing the exploration schedule in
a guided way, similar to experience replay in reinforcement
learning [39], would be a promising future direction.

To compare the sample efficiency, we train each model on
a subset of the full train set that is composed of interactions
with two to four objects (432 K samples in total) and evaluate
the effect prediction performance on the full test set. Fig. 5(a)
shows the prediction errors over five runs for different models
as the number of samples increases. Each model is trained for
1000 epochs except for the full train set where we train for
4000 epochs. The results show that the performances of Atten-
tive DeepSym and Relational DeepSym increase in a similar
fashion with the increasing sample size. However, the overall
performance of Relational DeepSym is better than Attentive
DeepSym on all sample sizes. This suggests that a bottleneck
(in this case, the discrete representation) with a set of object
symbols and relational symbols is more sample efficient than
the one with only object symbols. In Attentive DeepSym, the
bottleneck is essentially a set of object symbols, and relations
are implicitly learned from these symbols (see Fig. 1 – bottom
right). On the other hand, in Relational DeepSym, the object and

1https://api.wandb.ai/links/alper/xvpcogu1
2Averaged over five runs. Units are in centimeters. Welch’s t-test [38] shows

significant differences (p < 0.02 for all cases) between the proposed method
and others.
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Fig. 3. Action sequence prediction results for different models. Top – An example action sequence is shown with the initial state (the input to models) in the first
image and the ground truth final state after executing the action sequence in the fourth image. Rows 2–4 – The final object positions predicted by each network are
shown with a transparent color.

the relational symbols are processed independently from each
other (fo and fr in Fig. 1 – top) and combined in the aggregation
function.

Next, we analyze the effect of the number of attention heads on
the prediction performance. Fig. 5(b) shows the prediction errors
for Attentive and Relational DeepSym for 1 to 4 attention heads.
We see that the performance of Attentive DeepSym remains the
same for different numbers of heads. As the discrete bottleneck
in Attentive DeepSym is not relations but object symbols, the
number of attention heads does not affect the effect prediction
accuracy. However, the performance of Relational DeepSym
increases with the increasing number of attention heads—the
number of relations—since the model capacity increases with
multiple relations in the aggregation step. The number of atten-
tion heads is a hyperparameter that needs to be tuned for each
problem by finding the plateau in the performance, as done in [9]
for the dimensionality of object symbols.

C. Action Sequence Prediction

In this section, using the effect predictions {ê1, . . . , ên} of
models, we predict the next state {ô′1, . . . , ô′n} by adding the
prediction back into the position part of the state vector. Firstly,
the predicted pick-up and release effects are summed with the
state vector. Then, the movement from the pick-up to the release

position is added for objects that are predicted to be picked up.
This way, given an initial state, we can predict the final state the
robot reaches after executing a sequence of actions. Here, the
challenge is to understand what happens when an object is lifted
and released on top of another object in the presence of multiple
objects.

Fig. 3 shows action sequence prediction examples. Relational
DeepSym’s predictions are more accurate than others, especially
in the z-axis, the most significant axis in these experiments. This
shows that the proposed model understands that the presence of
an object on top of another object will change the action results.

In Fig. 4, we analyze how models perform as the number
of actions increases. We see that Relational DeepSym shows a
slightly lower error than others. Errors increase for all models
when the number of actions increases. This is an expected result
since we add the effect prediction back into the state vector,
effectively cascading the error over multiple steps.

D. Comparing Different Activations for Relations

In this section, we compare the performance of the Gumbel-
sigmoid activation used for learning relational symbols with
sigmoid, softmax, and Gumbel-softmax functions. Although
Gumbel-sigmoid is also used for learning object symbols as
well, we rather focus and ablate on the relational part. We train
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Fig. 4. Prediction errors for different models as the number of actions increases. (a) 2 objects. (b) 3 objects. (c) 3 objects. (d) 2–4 objects.

Fig. 5. Prediction errors for different models as (a) the number of samples and
(b) attention heads increase.

TABLE II
EFFECT PREDICTION RESULTS WITH DIFFERENT ACTIVATIONS

a Relational DeepSym model with the same hyperparameters as
in Section IV-A except for the activation function used in (3) to
compute object-object relations.

We report errors on the test set for different activations in
Table II. Since learning a symbolic definition of the environment
is a requirement that we want to satisfy to enable domain-
independent planning with off-the-shelf AI planners [3], [5],
[6], [9], [21], we can only use discrete outputs that are rounded
to either 0 or 1 at inference time. As such, we report two different
results: (1) without rounding and (2) with rounding. The results
show that using Gumbel-sigmoid for learning relational symbols
achieves lower errors in terms of effect prediction. This is
expected since Gumbel-sigmoid is designed to approximate a
Bernoulli distribution, which is in accordance with the distri-
bution of pairwise relations; an object-object relation is either
active or inactive.

V. CONCLUSION

In this letter, we proposed a new method to simultaneously
learn object symbols and relations between objects in a single
architecture. Namely, discrete attention weights are computed
from object features to model relations between objects. As these
weights are discrete, they can be regarded as relational symbols

between objects. Such a feature is desirable because it allows
us to model the environment with object symbols and relations
between objects, which was not available previously [9], [10].
We showed that the proposed model achieves significantly lower
errors than others in predicting the effects of (possibly a se-
quence of) actions on a varying number of objects and produces
meaningful symbols that allow us to model the relations between
objects for settings where the number of objects can vary.

As the next step, we plan to convert the learned symbols
into PDDL operators [40] for domain-agnostic planning with
off-the-shelf planners. Rules defined with learned symbols can
be generated by a tree learning approach in which the features
would be the binding of variable names to the symbol values,
and the labels would be unique symbolic effects (unique changes
in object symbols and relations). Alternatively, these operators
can be learned by partitioning the symbolic dataset as in [22].
Such a conversion will remove the cascading of errors in action
sequence prediction and allow for a fast search in the symbolic
space by removing the need to use a neural network.

In the current report, we focused on the formation of discrete
representation of continuous action-effect relations in a table-
top scenario. One future direction is to test the generalization
effectiveness of the obtained discrete relations in more complex
manipulation setups. In our experiments, we used the positional
change of objects as the effect of an action, which we plan
to extend to include orientation difference in SO(3). Learning
action primitives, such as pick and place, together with object
symbols is another promising direction that would allow the
method to be applied to tasks where actions cannot be given
apriori.
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