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Abstract 

In the new era of Industry, characterized by transformative technological shifts, robots have 
become integral to manufacturing. This paper delves into human–robot interaction (HRI), 
specifically emphasizing human–robot collaboration (HRC). As robots play pivotal roles in sectors 
like manufacturing, understanding collaboration dynamics becomes imperative. HRC involves 
humans and robots jointly pursuing shared objectives, emphasizing the development of cognitive 
models for enhanced performance. Simultaneously, the field of cognitive robotics aims to create 
intelligent robots with adaptive behaviors, integrating insights from AI, cognitive science, and 
robotics. Providing an overview of current trends, challenges, and research directions, this paper 
explores the intersection of HRI and Cognitive Robotics. Navigating the landscape of collaborative 
synergy between humans and cognitive robots offers insights into the transformative potential of 
this dynamic field in the industrial realm. 

 

1. Introduction 

The onset of a transformative era in manufacturing, characterized by the integration of cyber-
physical systems, the Internet of Things (IoT), and networked communication, marks a significant 
shift in the industry's landscape (Schwab, 2016). This revolution signifies a comprehensive 
reevaluation of traditional approaches in production, management, and governance, propelling 
industries toward an era where digital interconnectivity and intelligent automation become the new 
standard (M. Xu et al., 2018).  

Within this context, the role of intelligent robotic technologies, or Robotics 4.0 emerges as critical 
in revolutionizing the industrial operational framework. Through the integration of advanced 
sensory technologies and sophisticated learning algorithms, intelligent robotic systems possess 
the capability to dynamically recalibrate their actions, tool configurations, or programming in 
alignment with changes in product specifications or production exigencies (Cao et al., 2020). This 
adaptability is a cornerstone in the evolution of flexible manufacturing systems that are proficient 
in accommodating a diverse range of tasks and product types (Soori et al., 2024). Advancing from 
the substantial progress made by Robotics 3.0, which introduced as deep learning, digital 
twinning, and human-robot natural interaction, Robotics 4.0 is set to further revolutionize the field 
with the introduction of the Internet of Robots, Brain-on-Cloud (BoC) technology, the Artificial 
Intelligence of Things (AIoT), the deployment of 5G networks and deep learning and integrations 
of robot cognitive skills (Gao et al., 2020).These advancements enhance system capabilities 
through deep learning and cognitive skills for more sophisticated and connected solutions (Hwang 



& Tani, 2018). A greater autonomy and decision-making in robots represent a crucial 
advancement, integrating them more seamlessly into industrial and everyday settings.  

Within this technological landscape, the domains of Human-Robot Interaction (HRI) and Human-
Robot Collaboration (HRC) stand as essential components, marking a transition towards more 
integrated and interactive manufacturing environments. HRI is concerned with crafting systems 
that facilitate effective understanding and communication between humans and robots (Sheridan, 
2016), while HRC delves into collaborative scenarios where humans and robots share tasks and 
environments (Krüger et al., 2009). This collaborative dynamic not only boosts productivity and 
safety but also drives innovation by creating manufacturing systems that are both adaptable and 
resilient (Wang et al., 2017).Therefore, the progression of HRI and HRC is key to fulfilling the 
vision of the new landscape of industry, merging human-centric operations with robot-assisted 
processes to innovate manufacturing and service sectors. 

In 2021, the EU witnessed a 5.5% rise in non-fatal work accidents and a marginal decrease in 
fatal accidents, signaling a need for enhanced occupational safety despite technological 
advancements in sectors like manufacturing, which experienced 19.2% of these non-fatal 
incidents (Statistics Explained, 2023). The persistence of work-related musculoskeletal disorders, 
among an aging workforce and evolving work environments, further accentuates this need 
(Crawford et al., 2020). The European Commission recognizes the necessity of supporting worker 
protection standards, considering the substantial yet insufficient 70% decrease in accidents since 
1994 (European Commission, 2021).With new technologies introducing complex challenges, the 
reevaluation of health and safety protocols, particularly concerning AI and robotics, becomes 
crucial to mitigate emerging risks and ensure a safer, more resilient workforce in the face of 
industrial transformation (European Commission, 2019). 

In the nexus of these technological breakthroughs, Cognitive Robotics (CR) emerges as an area 
of particular intrigue. It seeks to provide robotic systems with a level of adaptive intelligence that 
parallels human cognitive functions, thereby facilitating more sophisticated and anticipatory 
interactions with their environment (Vernon, 2014).  The realization of this adaptive intelligence is 
facilitated through the application of bio-inspired methods, which inform the design of 
sensorimotor, cognitive, and social capabilities in autonomous robots (Cangelosi & Asada, 2022). 
The integration of CR with HRC leads in the era of Cognitive HRC, a burgeoning field that is 
assured to revolutionize the collaborative dynamics between humans and robots. (Han et al., 
2021).  Emphasizing Cognitive HRC underscores a transition towards robots that are not only 
context-aware and decision-capable but also intuitive and responsive to human nuances (Fischer 
& Demiris, 2019; Moulin-Frier et al., 2018; Nakamura et al., 2018; Tan & Huan, 2011). Therefore, 
the pursuit of CR and Cognitive HRC is critical, promising to harness the transformative power of 
Industry 4.0 and drive us toward a future where collaborative intelligence is intrinsic to both 
industrial efficiency and societal advancement. 

2. Cognitive Robotics  

2.1. Definitions 

CR represents a concerted endeavor to construct intelligent systems that embody physical form, 
drawing heavily on methodologies from cognitive and natural sciences (Stein, 1997). De Giacomo 



(1998) situated CR at the confluence of reasoning, perception, and action, stressing the necessity 
of a unified theoretical and practical framework. This field is not merely about the automation of 
tasks but about equipping robots with the ability to navigate dynamic and partially unknown 
environments through sophisticated knowledge representation and reasoning (Levesque & 
Lakemeyer, 2008). Further emphasizing the need for robots to exhibit human-like intelligence, 
Kawamura and Browne (2009) pointed to the integration of advanced perception, motor control, 
and cognitive functions as key aspects of CR.  In essence, CR synthesizes insights from artificial 
intelligence (AI) with cognitive and biological sciences to foster the development of robots that can 
think, learn, and interact in ways that emulate human beings. As Cangelosi and Asada (2022) 
articulated, CR integrates these diverse strands of knowledge to enhance the autonomous 
capabilities of robots, propelling them beyond mere machines to entities capable of intelligent 
behavior and social interaction. 

The discipline encompasses a wide array of applications, from cognitive modeling with both 
simulated agents and physical robots to software agents and hardware-based smart objects 
(Morris, 2005; Vernon, 2014). It also includes the design of intelligent human-computer interaction 
systems, known as cognitive systems engineering (Woods & Roth, 1988), and extends to general-
purpose AI systems like IBM Watson (High, 2012). A significant contribution of cognitive systems 
research is the provision of an operational definition of cognition that captures its full complexity. 
Vernon ( 2014) offered a comprehensive delineation of cognition within artificial systems, 
portraying it as an integrative process through which an autonomous entity perceives its 
environment, learns from experiences, anticipates potential outcomes, takes goal-directed 
actions, and adapts to evolving contexts. Cognition, hence, is conceptualized as a systemic 
attribute, weaving together the core functionalities of an agent—autonomy, perception, learning, 
anticipation, action, and adaptation (Figure 1).  

 

Figure 1: The six key attributes of cognition in artificial cognitive systems. Source: Adapted from Vernon 
2014. 

2.2. Cognitive Architectures 

A cognitive architecture serves as the foundational software framework for systems designed to 
emulate the capabilities of a cognitive agent. It delineates the structure and organization of a 
cognitive system, encompassing the constituent parts or modules that facilitate cognitive 
processing (Sun, 2004). 



Within the Cognitivist (Symbolic) Perspective, cognitive architectures are centered on the invariant 
aspects of cognition—those that remain stable over time and across different tasks(Langley et al., 
2009; Ritter & Young, 2001). This perspective posits that cognitive functions can be represented 
by symbols and rules that are manipulated within the architecture, akin to software running on a 
computer.Conversely, the Emergent (Embodied) Perspective posits that cognition arises through 
the developmental processes of an agent as it interacts with its environment (Vernon, 2022). This 
approach emphasizes the necessity of an environment beneficial to development, balancing 
regularity for understanding and variability for stimulating growth without overwhelming the agent's 
developmental pace. Emergent cognition is thus characterized by two core elements—phylogeny, 
which is the architecture itself, and ontogeny, the accumulation of experiences as the agent's 
cognitive capabilities advance. The most adopted approach in contemporary research is the 
Hybrid Architecture. These architectures amalgamate elements from both symbolic and emergent 
paradigms to capitalize on their respective strengths. (Kotseruba & Tsotsos, 2020) note a 
significant prevalence of hybrid architectures, with their survey identifying 22 symbolic, 14 
emergent, and 48 hybrid systems, 38 of which exhibit full integration. 

Despite the challenges in establishing a universally accepted definition of cognition and the 
complexities of delineating intelligence, scholars concur on the existence of core cognitive abilities 
that underpin cognitive processes. These foundational capabilities include perception, attention, 
action selection, memory, learning, reasoning, metacognition, and prospection (Kotseruba & 
Tsotsos, 2020; Vernon, 2014). In addition to the core cognitive abilities that underpin the 
functioning of cognitive systems, there is a recognized consensus on the pivotal role of social 
cognition abilities for fostering effective interactions and collaborations between humans and 
robots (Yukie Nagai, 2022). Social cognition encompasses the capabilities essential for 
recognizing and managing oneself in relation to others, as well as for applying and interpreting 
social signals during interactions. These capabilities include Self-Other Recognition, enabling 
robots to distinguish between themselves and human partners; Joint Attention, which allows 
robots and humans to focus on the same object or task cooperatively; Reading Intentions, the 
ability of robots to understand and predict human actions and intentions; and Altruistic Behavior, 
where robots can exhibit actions that benefit their human counterparts.  

CR merges diverse disciplines to forge systems with nuanced intelligence and autonomy. Core 
and social cognitive abilities are crucial for deepening the symbiosis between humans and robots, 
pushing the boundaries of collaboration and innovation in this dynamic field. 

3. Human-Robot Collaboration HRC in Industry 

Human-Robot Interaction (HRI) encompasses the multifaceted interplay and communication 
exchanges that occur when humans and robots engage in a common task, facilitated by an 
interface that encompasses all system aspects and procedures designed for user interaction (ISO 
8373:2012, ISO 11064-5:2008).  

HRI has been meticulously categorized from various analytical standpoints. Initiated by Yanco and 
Drury (2004), the taxonomy encompasses criteria such as task nature and criticality, robot 
morphology, human-to-robot ratios, team composition, interaction levels, proximity, decision-
making support, temporality, spatial arrangement, and autonomy. Schmidtler et al. (2015)further 
refined this understanding by identifying four key dimensions—workspace sharing, timing of work, 



goal alignment, and the presence of physical contact—thus delineating the spectrum of human-
robot relations from coexistence through cooperation to collaboration. Building on this conceptual 
framework, subsequent studies Wang et al. (2017) introduced additional considerations such as 
the spatial-temporal relationship between agents, the multiplicity of agents, and leader-follower 
dynamics. These contributions enriched the taxonomy by articulating the complex interplay of 
autonomy and collaborative roles within industrial applications.   

Building upon these foundations, additional dimensions such as shared workspace, direct contact, 
shared task work, simultaneous and sequential processes were brought to the forefront (Prati et 
al., 2021; Vincent Wang et al., 2018). These aspects underscore the gradations of intimacy in 
human-robot relations, from independent yet simultaneous operation to a synchronized dance of 
collaborative efforts. The classifications suggest a matrix where human-robot pairs may engage 
in varying degrees of overlap in their tasks, with implications for safety and efficiency.  

To attain a comprehensive perspective, it is crucial to consider the entire contextual framework in 
which human-robot interactions occur (Apraiz et al., 2023). This holistic approach encompasses, 
on one hand, human characteristics—ranging from socio-demographic profiles, motivational 
drives, self-perceptions, prior experiences, and knowledge to the influence of subjective social 
norms, behavioral intentions, and the individual’s position within the team structure. On the other 
hand, it involves task characteristics, including the imperative of safety, the intricacies of task 
design, the implications of the technology employed, the reliability of the processes, the degree of 
flexibility afforded, and the autonomy and control available to operators. Finally, the characteristics 
of the context and organization are integral, covering the spectrum from the nature of relationships 
between operators and executives, to the dynamics with immediate supervisors, the availability 
and clarity of information, the scope for participatory decision-making, the quality of relationships 
between colleagues, the provision of support, the ergonomics and design of the workplace, the 
intensity of work demands, the management of changes within work systems, the adequacy of 
remuneration, and the sufficiency of support and training provided. 

In the continuum of HRI taxonomy, recent systematic reviews have illuminated practical 
guidelines. The emerging guidelines underscore the importance of trust, a factor that interfaces 
significantly with the established dimension of decision-making support and autonomy (Simões et 
al., 2022). The attribution of blame, technology acceptance, and human cognitive performance 
are intricately linked with the nature and criticality of tasks, shaping the proximal and temporal 
coordination between humans and robots. Furthermore, the guidelines suggest that comfort and 
safety are not peripheral but central to the taxonomy's considerations of proximity and shared task 
work.  Moreover, the integration of continuous self-learning mechanisms within robotic agents is 
identified as a critical frontier for advancing HRI. Such developments would not only refine the 
robots' cognition modeling but also foster a personalized interaction experience for the 
collaborating human workforce (Jahanmahin et al., 2022). This emergent research advocates for 
robots that are context-aware, transcending static programming to actively learn and adapt to the 
nuances of human behavior, including emotional cognition and decision-making processes. 

The  field of HRI extends beyond mere operational taxonomies to a profound comprehension of 
the intricacies inherent in collaborative endeavors. Central to this evolution is the pivotal role of 
trust, the flexibility of role dynamics, and the importance of a shared cognitive framework. These 
approaches underscore the necessity of a synergistic affinity between human ingenuity and 
robotic efficiency. It is imperative that future developments in collaborative robotics not only focus 



on the refinement of functional interactions but also foster enhancements in joint cognitive 
capabilities, thereby engendering an enriched collaborative landscape that leverages the unique 
strengths of both human and robotic agents.  

4. Intersectionality between Human-Robot Collaboration and Cognitive Robotics 

As the frontier of intelligent automation expands, the interdisciplinary nexus of CR and HRC 
emerges as a critical area of study. The rapid proliferation of literature in these areas needs a 
methodical examination of conceptual trends to chart the current landscape and anticipate future 
directions. This section utilizes the bibliometric capabilities of VosViewer, an analytical tool adept 
at distilling complex data into intelligible maps of thematic concentrations (Van Eck et al., 2010), 
to analyze key trends and delineate the convergence points of these two pivotal fields. Through 
this analysis, we aim to articulate a scholarly narrative that encapsulates the intellectual fusion of 
CR and HRC, offering a foresight into their collaborative potential.  

4.1. Methodology 

A search string comprising the following terms was used to query the Lens.org database: "Human" 
AND "Robot" AND "Collaboration" (Human AND ( Robot AND Collaboration ) ) for the first search 
and "Human" AND "Robot" AND "Collaboration" AND "Cognitive" AND "Robotics" ( Human AND 
( Robot AND ( Collaboration AND ( and AND ( Cognitive AND Robotics ) ) ) ) ) The search string 
in Lens.org  was based on the database titles, abstracts and keywords. 

To delineate the interconnectivity and thematic evolution within the domains of CR and HRC, a 
bibliometric network analysis was conducted utilizing VOS Viewer. This involved the creation of 
two distinct lexical maps: the first one exclusively focused on HRC and the second one charting 
the research terrain of CR in concert with HRC. These maps were constructed by evaluating 
'keyword co-occurrence' within the dataset derived from academic publications, with 'co-
occurrence' signifying the frequency of adjacent appearances of keywords. In the generated 
lexical network, terms are positioned within a two-dimensional space predicated on their co-
occurrence rates and associative strength with other keywords. The proximity between two terms 
in this space signifies the likelihood of their conceptual relatedness—the closer two terms are, the 
stronger their theoretical association (Van Eck et al., 2010). Each term's label and circle size are 
indicative of its prominence, determined by the number of its connections and the total intensity of 
these connections (Van Eck & Waltman, 2017). Clusters of terms represent groups of closely 
interconnected terms, as delineated by the weighted and parameterized modularity function. To 
ensure a focused analysis, a threshold for inclusion was set, considering only those keywords with 
a minimum of 10 co-occurrences (Van Eck & Waltman, 2017). Additionally, a Thesaurus was 
assembled in Excel to amalgamate synonymous concepts, such as 'HRI' and 'Human-Robot 
Interaction,' for analytical consistency.  

4.2. Lexical Networks  

4.2.1. Human Robot Collaboration 

 
The final corpus consisted of 7117 articles, the keyword co-occurrence analysis found 72  terms 
that meet the threshold (number of co-occurrences of a keyword >40).  The Lexical Networks map 
in Figure 2., indicates a research landscape where "robot", "human robot collaboration", and 
"human" are central, suggesting a focus on integrating robots into human-centric environments 



and systems. The importance of "system" and "environment" denotes a holistic approach to 
robotic integration, while "control" and "motion" highlight the dynamics of interaction. The presence 
of "learning" and "AI" reflects an emphasis on adaptable, learning-capable robots. Key themes 
include technological advancement, with an overarching human-centered design approach 
underscored by terms like "user" and "operator", pointing to a field driven by human needs and 
technological innovation. Further cluster analysis highlights 5 distinct thematic domains within the 
research landscape, each color-coded cluster reflecting cohesive areas of inquiry:  

 Green Cluster: Collaboration and flexibility in robotic integration within production and 
workspaces. 

 Yellow Cluster: User-centered research on the interaction and perception between 
humans and robots. 

 Red Cluster: Technical focus on robot control, motion, and task simulation. 

 Blue Cluster: Cognitive and learning capabilities of robots, including prediction and 
intention understanding. 

 Purple Cluster: System-wide integration of robots, emphasizing AI and environmental 
interaction. 

The proximity of terms like "system", "environment", "control", "motion", and "learning" to the 
central nodes implies these are also significant topics, heavily connected to the core subjects. The 
layout seems relatively balanced with no overly isolated clusters, implying a cohesive field where 
different subtopics maintain relevance to each other. The spread of nodes indicates a diversity of 
research within the field, covering technical, cognitive, and systemic aspects of HRC. 



 

Figure 2: Vos Viewer Lexical network, Human-Robot Collaboration 

 

4.2.2. Human Robot Collaboration and Cognitive Robotics 

The final corpus consisted of 1719 articles, the keyword co-occurrence analysis found 78  terms 
that meet the threshold (number of co-occurrences of a keyword >15). The Lexical Networks map 
in Figure 3 shows the terms "Human Robot Collaboration," "Human," "Collaboration," "Robot," 
"Performance," "Capability," "Behavior," "Challenge," "Framework," and "Trust" which stand out 
as the conceptual pillars of the map. These terms represent the fundamental aspects of the 
research landscape, spanning from the theoretical basis to practical applications and the inherent 
challenges of the field. Further cluster analysis highlights 4 distinct thematic domains within the 
research landscape, each color-coded cluster reflecting cohesive areas of inquiry: 

 Blue Cluster: Interaction between humans and robots, emphasizing the roles and 
performances of both operators and cobots in collaborative tasks. 

 Yellow Cluster: Intrinsic attributes of robots and their interactions with humans, 
underpinned by concepts of capability, behavior, theoretical foundations, and trust. 



 Green Cluster: Challenges in HRC, discussing the frameworks and integration strategies, 
as well as the decision-making processes and communication methods required for 
effective reasoning and collaboration. 

 Red Cluster: Cognitive and computational backbone of the field.  

The lack of a dominant central node linking the clusters indicates a field with distinct, specialized 
research areas in HRC and CR. This suggests a landscape where sub-disciplines are emerging 
with their own focused research agendas rather than a single, cohesive narrative. The connections 
between these clusters are notably weak, highlighting a research community where 
interdisciplinary engagement is still maturing. Compared to the previous map's robust 
interconnectivity, this map suggests a discipline in a state of development, with potential for 
greater cross-disciplinary integration as these subfields evolve. This network's configuration 
underscores the dynamic nature of the field, reflecting an academic landscape that prioritizes 
depth in specialized areas while gradually forging inter-domain linkages.  

 

Figure 3: Vos Viewer Lexical network, Human-Robot Collaboration and Cognitive Robotics 

 



5. Challenges and Opportunities for Future research directions 

Integrating the VOSviewer lexical analysis, we can discern that the current research terrain within 
HRC and CR is both fragmented and ripe for further exploration. The VOSviewer analysis revealed 
a landscape where key cognitive and collaborative themes in robotics are burgeoning, yet not 
cohesively integrated, signaling a clear directive for future research to bridge these domains more 
effectively. To navigate this complex terrain and propel towards a more interdisciplinary research 
nexus between HRC and CR, three primary areas have been identified: the contributions of CR to 
HRC, the influence of HRC in the evolution of CR, and the interplay of cognitive systems and 
ethical considerations. Addressing these themes will not only consolidate the existing research 
but also catalyze the development of an integrated field where the symbiosis of HRC and CR can 
thrive, underpinned by a robust ethical framework. This discussion sets forth to unravel these 
areas, guiding a path forward for an enriched, interdisciplinary research trajectory. 

5.1. Cognitive Robotics contributions in Human-Robot Collaboration  

In the context of HRC, a major challenge is the navigation of unforeseeable environmental 
dynamics(Zsolt Kemény et al., 2021), which is reflected in the lexical network analysis where 
'Uncertainty,' 'Environment,' and 'System' are interlinked. These interdependencies within the 
research underscore the complexity of developing adaptable and resilient HRC systems. The 
technological progressions in CR hold promise for integration into HRC, by enhancing control, 
motion, and safety within collaborative operations. The field of Neurorobotics, for example, is 
making advances by merging neural mechanisms with robotic systems to produce robots capable 
of more complex and human-like behavior (Hwu & Krichmar, 2022). Innovations such as the 
muscle-signal-reading wristband from CTRL-Labs, now a project of Meta Platforms(Melcer et al., 
2018), exemplify breakthroughs in robot controllability and communication. Additionally, Soft 
Robotics introduces a new approach with robots made from flexible materials that can navigate 
and adapt to their surroundings more effectively than traditional robots. This adaptability is critical 
when working alongside humans, particularly in handling intricate tasks(Hughes et al., 2022). 
Companies like Soft Robotics Inc. have demonstrated the practical benefits of such technology 
with their robotic grippers that can manage sensitive tasks across different industries, showcasing 
the adaptability of CR to real-world variability (Terrile et al., 2021). 

The maps also indicate a proliferation of Machine Learning (ML) applications in HRC, yet reveal 
an underrepresentation of in-depth HRC models, aligning with the findings of Natarajan et al. 
(2023). The integration of ML in HRC is paving the way for robots that not only learn from and 
adapt to human behavior but also anticipate and make decisions that enhance collaboration. 
Within Cognitive Robotics (CR), diverse methodologies elucidate the integration of learning and 
decision-making in robots. This progression mirrors the evolution from basic collaborative robots 
to those capable of complex cognitive functions, as seen in Developmental Robotics, Evolutionary 
Robotics, and Swarm Robotics. Each of these branches of Cognitive Robotics represents a leap 
towards replicating or understanding human-like cognition and interaction within robots, signifying 
a confluence of goals between HRC models and Cognitive Robotics advancements. 
Developmental Robotics, for instance, draws from developmental psychology, attempting to 
replicate the cognitive evolution observed in human infancy. It advances robot design by creating 
systems like the iCub humanoid robot, which emulates child-like learning through sensorimotor 
and social engagement, thereby enhancing our grasp of both robotics and cognitive development 
(Cangelosi & Schlesinger, 2018; Vernon et al., 2007). Evolutionary Robotics applies evolutionary 
algorithms to refine robotic behaviors, allowing for the natural selection-like optimization of their 
interactions with dynamic environments (Respall & Nolfi, 2020). Meanwhile, Swarm Robotics, 



inspired by the complex coordination seen in nature, focuses on the collective behavior of robot 
groups. This domain benefits from the robust, flexible, and scalable nature of distributed control 
systems, exemplified by Amazon Robotics' automated warehouse solutions (Girija et al., 2021; 
Hamann, 2018).  

This disparity between the technical advances in CR and the practical application within HRC 
systems denotes a vital area for academic inquiry and development. As the field matures, fostering 
a closer integration of these technologies will be essential for realizing the full potential of human-
robot partnerships. 

5.2. Human-Robot Collaboration contributions in Cognitive Robotics 

In the domain of CR, the challenge remains to imbue robots with a semblance of human cognition, 
a formidable task that encompasses the development of systems that can think, learn, and even 
experience. Tawiah (2022) highlights the breadth of this challenge, from the recognition of facial 
expressions and gestures to the implementation of decision-making processes that align with 
human reasoning. The necessity for rigorous research into Cognitive HRC models is paramount 
(Inkulu et al., 2022; Natarajan et al., 2023), to inquiry beyond mere functional collaboration and 
delve into the realm of cognitive empathy and understanding.  

The integration of HRC into the development of CR underscores a crucial methodological shift. In 
particular, for robots with embodied and hybrid cognitive architectures, the interaction with humans 
is not merely a supplementary feature but a core facet of their cognitive development. Such 
interactions are paramount to the robots' ontogeny— the progressive accumulation of experiences 
that shape their learning and maturation processes (Vernon, 2022). In these architectures, 
engagement with human counterparts and dynamic environments enables robots to evolve 
beyond preprogrammed responses. Through exposure to human behavior and feedback, these 
systems learn to interpret complex social cues and adapt accordingly, leading to an enhancement 
of their cognitive capabilities. Crucial studies supporting this include research by Sethumadhavan 
(2012), who delves into the anthropomorphic qualities required for believable HRI, Lemaignan et 
al. (2017) who explore the cognitive skills necessary for shared space and collaborative tasks, 
and Tsarouchi, Makris, & Chryssolouris (2016) who highlight the challenges of task planning and 
safety in manufacturing environments, emphasizing the necessity for robots to be able to adapt to 
and learn from their interactions with humans. The findings from these studies point to a future 
where the development of cognitive abilities in robots is inextricably linked to their ability to interact 
with and learn from humans in a collaborative setting. 

Within the dynamic interplay of CR development and HRC, a vast research frontier emerges: 
understanding the implications of robotic cognitive abilities on human users, which is reflected in 
the lexical network analysis where 'Capability,' 'Automation,' and 'Collaboration' are interlinked 
and closely allocated. As robots acquire functionalities such as memory, learning, decision-
making, and anticipation, it becomes imperative to scrutinize their impact on human interactions. 
This inquiry extends beyond the technical feat of emulating human cognitive skills in robots; it 
delves into identifying which cognitive capabilities best enhance HRC. Adopting a user-centered 
design perspective, we can strategically direct the development of CR towards cognitive functions 
that not only mimic human intelligence but also enrich the collaborative experience. For instance, 
how does a robot's ability to remember personal preferences or anticipate human actions influence 
the user's trust and ease of interaction? What impact does a robot's learning curve have on the 
user's perception of the robot as a competent and reliable partner? This line of inquiry aligns with 
the broader goal of enhancing HRC by ensuring that the cognitive evolution of robots is attuned 
to the nuances of human cognition and social dynamics. A deep dive into this facet of CR could 



yield insightful guidelines for designing robots that are not just capable but also socially compatible 
with their human collaborators.  

Thus, while robots advance in mimicking cognitive processes, the cultivation of social cognitive 
abilities seem to be paramount for enhancing their ability to engage meaningfully in HRI. Social 
cognitive abilities such as Self-Other recognition, Joint attention, and Reading intentions are 
critical for developing robots that can understand and predict human behavior. These abilities 
enable the creation of an internal model of the interacting agent, which is foundational to 
metacognition. Such an internal model, rooted in the theory of mind, allows the attribution of 
mental states—intentions, beliefs, desires—to others, which is essential for seamless interaction 
(Curioni et al., 2017). Aligned with these principles, Decision and Control Action Scheme (DCAS) 
framework represents an HRC model that embodies metacognition, facilitating dynamic role 
adaptation between human and robot agents for cooperative decision-making (Curioni et al., 
2017). The framework embodies principles of cooperative decision-making and dynamic action, 
wherein both human and autonomous agents can interchangeably assume lead and co-lead roles 
contingent on task exigencies. Effective communication and cooperation between the agents are 
deemed imperative for accomplishing shared objectives while ensuring safety and efficiency. 
Alongside, the Proactive HRC paradigm pushes the boundaries further, leveraging these 
capabilities for anticipatory collaboration (Li et al., 2021). This innovative model is predicated on 
a triad of advanced cognitive teamwork competencies: (i) inter-collaboration cognition, which 
fosters a shared understanding and empathy between humans and robots; (ii) spatio-temporal 
cooperation prediction, enabling the anticipation of interactive dynamics over the continuum of 
collaborative tasks; and (iii) self-organizing teamwork, which cultivates collective intelligence 
within the manufacturing ecosystem. Together, these models highlight the promise of social 
cognitive abilities in enhancing robot-human interactions, signaling a rich direction for research 
into cognitively inspired HRC systems. 

5.3. Cognitive systems and ethics 

Although absent from the lexical networks displayed in the VosViewer map, the dimension of 
ethics constitutes an indispensable consideration within the domains of Human-Robot 
Collaboration (HRC) and Cognitive Robotics. The imperative to interrogate and integrate ethical 
principles is paramount, as it shapes the trajectory of societal integration and responsible 
innovation in these rapidly evolving fields.The profound advancements in machine learning and 
cognitive computing elevate the ethical stakes, as these technologies equip robots with decision-
making capabilities once solely attributed to humans. Addressing ethical concerns is not merely 
about instilling robots with a set of pre-determined moral codes but also about ensuring they 
operate within frameworks that respect human rights, privacy, and dignity. Incorporating inclusive 
design is vital as well for creating systems that are truly beneficial for a diverse range of users, to 
ensure that robotic systems are accessible and usable by people with varying abilities, 
backgrounds, and experiences. Future research must, therefore, extend beyond technical and 
cognitive proficiency to encompass the creation of ethical guidelines that govern robot behavior, 
particularly in scenarios of close HRI. This entails considering issues such as informed consent in 
human-robot data sharing, bias in decision-making algorithms, and the broader societal impacts 
of deploying autonomous robotic systems. 

As an example of a potential future research direction, Wei Xu Zaifeng Gao's insights into human-
AI teaming (HAT) present a paradigmatic shift in human-AI systems, emphasizing the importance 
of a human-centered AI (HCAI) approach (2023). This framework illustrates a future research 
trajectory that embraces the synergy of human cognition, robotic technology, and ethical 



consideration. The HAIJCS framework does not view humans, technology, and ethics as separate 
entities but as interconnected facets that must be considered holistically to achieve harmonious 
and effective human-AI teaming. This model stands at the forefront of HRC research, seeking to 
establish a human-centered AI (HCAI) paradigm where AI is more than a tool—it is a collaborative 
partner capable of augmenting human abilities and contributing to joint performance. 

 

6. Conclusions 

This paper has examined the emergent synergy between CR and HRC, revealing their pivotal role 
in shaping the future of industrial automation. Our bibliometric analysis via VOSviewer has 
illuminated key trends and convergence points between CR and HRC. It presents an academic 
narrative ripe for further exploration, advocating for a more interconnected research paradigm. 
Key findings indicate that while advancements in CR have led to more autonomous and adaptable 
robotic systems, integrating these advancements effectively within HRC practices remains a 
challenge. The implications of these technologies extend beyond increased productivity; they offer 
the potential for safer work environments and the decrease of monotonous tasks for human 
workers.  

As we move forward in the field of collaborative intelligence, we must also address the ethical 
ramifications of these technologies. Future research must balance technical innovation with ethical 
foresight, ensuring that as robots become more cognitively adept, they do so in a manner that 
respects human values and augments human capabilities. To address these multifaceted 
challenges, cross-disciplinary research is imperative. Future work should therefore draw on the 
expertise of various fields such as engineering, computer science, psychology, ethics, and design, 
to develop robust HRC models that are ethically grounded and practically viable. Additionally, 
research should be directed towards addressing the gap between technological capability and its 
real-world applicability, ensuring that the benefits of CR and HRC are fully realized in practical 
settings. By acknowledging these limitations and focusing on these recommendations, the field 
can progress towards a more cohesive and responsible integration of CR in human-centric 
industrial environments. 
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