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Abstract— In the field of Learning from Demonstration
(LfD), Dynamical Systems (DSs) have gained significant atten-
tion due to their ability to generate real-time motions and reach
predefined targets. However, the conventional convergence-
centric behavior exhibited by DSs may fall short in safety-
critical tasks, specifically, those requiring precise replication of
demonstrated trajectories or strict adherence to constrained
regions even in the presence of perturbations or human
intervention. Moreover, existing DS research often assumes
demonstrations solely in Euclidean space, overlooking the
crucial aspect of orientation in various applications. To alleviate
these shortcomings, we present an innovative approach geared
toward ensuring the safe execution of learned orientation skills
within constrained regions surrounding a reference trajectory.
This involves learning a stable DS on SO(3), extracting time-
varying conic constraints from the variability observed in
expert demonstrations, and bounding the evolution of the
DS with Conic Control Barrier Function (CCBF) to fulfill
the constraints. We validated our approach through extensive
evaluation in simulation and showcased its effectiveness for a
cutting skill in the context of assisted teleoperation.

I. INTRODUCTION

LfD enables robots to learn novel skills by imitating
human actions instead of coding them [1]. This involves au-
tomatic extraction task requirements from human demonstra-
tions. Ideally, the acquired skills are generalizable, agnostic
to specific robot platforms, and robust against perturbations.
Among LfD approaches, DSs are attractive due to their
capability to generate real-time motions and converge toward
a predefined target [2]. During the execution phase, a robot’s
initial state is fed into the DS, enabling the robot to navigate
and reach its intended goal despite environmental uncertain-
ties or changes. Nevertheless, while this convergence-centric
behavior proves effective in various applications, it may be
inadequate or even counterproductive in safety-critical tasks
that demand the robot to closely mimic the demonstrated
trajectories or stay strictly within a constrained region [3].

The majority of works on DSs assume demonstrations
in Euclidean space and primarily consider task constraints
like obstacle avoidance concerning safety. However, it is
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Fig. 1. Setup of the experiment for assisted teleoperation. A human operator
uses a haptic device to adjust the cutting skill executed by a robot. The z-
axis of the EE frame (blue segment) coincides with the blade. The shaded
blue surface indicates the incision shape.

clear that orientation, residing in non-Euclidean space, also
plays a significant role in various applications. For instance,
consider the task of transporting and pouring a cup of
water. Here, it becomes crucial to constrain the orientation
of the cup to prevent unintended spillage, a requirement
that goes beyond the conventional scope of Euclidean task
constraints. Similarly, for tissue resection in the domain of
robotic surgery, precise orientation of surgical instruments
is vital for performing delicate procedures accurately and
safely. Indeed, as shown in Fig. 1, the orientation trajectory
directly influences the shape of the incision.

To address these challenges, we introduce a novel ap-
proach that ensures the safe execution of acquired orientation
skills when subjected to perturbation or human intervention.
This approach guarantees that the execution stays close
to a reference trajectory within the region defined by the
constraints derived from the variability of demonstrations.
The primary contributions of this work are: (i) An ex-
tension of Physically-Consistent Gaussian Mixture Model
(PC-GMM) [4] for learning stable DSs on SO(3). Notably,
we provide a formal proof of its asymptotic stability. (ii) A
novel approach that extracts orientation constraints based on
the variability of demonstrations and exploits Conic Control
Barrier Function (CCBF) [5] to ensure safe execution. (iii)
Validation of our method in simulation and in an assisted
teleoperation experiment focused on robotic cutting tasks.

II. RELATED WORK

A significant body of LfD literature focuses on stable
motion execution. One of the most prevalent methods, the
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Dynamic Motion Primitive (DMP) [6], [7], employs a phase
variable to cancel the nonlinear forcing term superimposed
on a stable linear DS to ensure convergence. DMP, being
a deterministic method, is limited to learning from a single
demonstration. The Stable Estimator of Dynamical Systems
(SEDS) [2] approximates a nonlinear DS with a combination
of linear ones but faces accuracy and stability dilemmas.
PC-GMM [4] alleviates this limitation by decoupling the
parameters of Gaussian Mixture Model (GMM) from those
of the linear DSs. The DS formulation in [3] provides a
behavior akin to “trajectory-tracking” for specific reference
trajectories and retains global convergence. Although the
aforementioned approaches are effective in learning position
trajectories, they neglect orientation. In [8], Riemannian
metrics are used to learn orientation trajectories via task-
parameterized GMM, without considering stability. Abu-
Dakka et al. [9] extended DMP to Riemannian manifolds
like quaternions, while Saveriano et al. [10] learnd a diffeo-
morphism to map simple manifold trajectories into complex
ones. In our current work, we draw inspiration from the supe-
rior performance of PC-GMM [4] and extend the framework
to orientation and establish its asymptotic stability on SO(3).

Learning constraints from demonstrations have been ex-
plored in the literature. In [11], position and force constraints
are extracted from demonstration variance. Menner et al.
[12] learned cost functions and constraints simultaneously
in an inverse optimal control framework, but the constraint
is limited to a convex hull in Euclidean space. In [13], linear
subspaces are learned as constraints incrementally and used
Control Barrier Functions (CBFs) to generate constrained
motions. CBFs were also used in [14] to maintain a joint
space trajectory within a learned covariance bound. A neural
network [15] and kernelized principle component analy-
sis [16] are used to learn equality constraints as manifolds,
whereas the learned constraints are on feature space and
lack of explainability. Perez-D’Arpino et al. [17] utilized task
space region, a volume in SE(3) around the keyframes, for
constrained motion planning. Chou et al. [18] proposed a
method to learn grid and parametric constraints from demon-
strations and uses Euler angles to represent the orientation.
Like most works, we exploit the variability in demonstrations
and extract orientation constraints based on conic constraints.

CBFs render a set forward invariant and are thus widely
used in the control of constrained systems [19]. Time-
Varying Control Barrier Function (TV-CBF) [20] can be used
to enforce time-varying constraints. Wu and Sreenath [21]
extended CBFs from Euclidean space to manifolds with
applications to geometrical control of mechanical systems
under time-varying constraints. In [5], CCBFs are used to
solve a distributed collision avoidance problem for a group
of agents on a sphere. Tan et al. [22] proposed a union of
hyperspherical constraints as CBF on SO(3) and applied it
to safety-critical control along a C2 reference trajectory. In
comparison, a conic constraint is preferred in this work as it
provides more flexibility when constructing constraints.

In assisted teleoperation, robots aid in task completion
and simplify teleoperation for the human operator. The most

prevalent method is virtual fixture [23], which assists the
operator by guiding or constraining either the user’s input
or the robot’s motion. Ewerton et al. [24] provided haptic
cues for goal-reaching tasks by constructing a potential
field based on learned GMM over demonstrations. Dragan
and Srinivasa [25] formalized assisted teleoperation as a
policy blending problem, arbitrating human input and robot
action based on the confidence of prediction of human
intention. The prediction of intended goals was further
improved by solving a partially observable Markov decision
process with hindsight optimization [26]. Task-Parameterized
Gaussian Mixture Model (TP-GMM) encodes demonstrated
trajectories and blends the learned model and user inputs
with a linear quadratic regulator [27]. In [28], the remote
robot autonomously executed a task learned with a task-
parameterized hidden GMM, with the user only providing
high-level task goals. Mower et al. [29] proposed a receding
horizon shared control method, which adapts future trajec-
tories based on the estimation of the operator’s intended
skill. We show the applicability of our method to assisted
teleoperation while providing formal safety guarantees.

III. PRELIMINARIES

A. Special Orthogonal Group SO(3)

Traditionally, orientations in 3D-space are represented as
rotation matrices that inhabit the Special Orthogonal Group
denoted as SO(3) [30], where

SO(3) :=
{
R ∈ R3×3 | R⊤R = RR⊤ = I, det(R) = 1} .

The group equipped with matrix multiplication
constitutes a Lie Group. The associated Lie algebra
comprises all 3 × 3 skew-symmetric matrices, i.e.,
so(3) :=

{
Ω ∈ R3×3 | Ω⊤ = −Ω} . The mapping (·)∧,

also denoted as [(·)]× : R3 → so(3) , along with its inverse
mapping (·)∨ : so(3)→ R3 are defined as

x =
(

x1
x2
x3

) [(·)]×
⇌
(·)∨

[x]× =
( 0 −x3 x2

x3 0 −x1
−x2 x1 0

)
.

Throughout the paper, we refer to x such that [x]× ∈ so(3)
as a tangent vector.

For a given [x]× ∈ so(3), the exponential map function
exp(·) : so(3)→ SO(3) allows the representation of [x]× as
rotation matrices

exp ([x]×) =

{
I+ sin(∥x∥)

∥x∥ [x]× + 1−cos(∥x∥)
∥x∥2 [x]2×, x ̸= 0

I, otherwise.
(1)

Its inverse is the logarithmic map log(·) : SO(3)→ so(3)

log(R) =

{
θ(R)

2 sin(θ(R))

(
R−R⊤) , R ̸= I

0, otherwise,
(2)

where θ(R) := arccos((tr(R) − 1)/2). To simplify the
notation, we introduce the uppercase exponential map
as Exp(x) := exp ([x]×)and the uppercase logarithmic
map as Log (R) := (log (R))

∨. Additionally, we define
LogRb

(Ra) := Log(R⊤
a Rb).



B. Time-Varying Control Barrier Function

Consider the control-affine system

ẋ = f(x) + g(x)u, (3)

where x ∈ X ⊂ Rn is the state, u ∈ U ⊂ Rm is the control
input, and f : Rn → Rn and g : Rn → Rn×m are locally
Lipschitz continuous functions.

Definition 1 (Extended class K∞ function): A continuous
function α : (−b, a) → R belongs to the extended class
K∞ for some a, b > 0, if α(0) = 0 and α increases strictly
monotonically.

Definition 2 (forward invariance of time-varying set) A
time-varying set C(t) ⊂ Rn is forward invariant to (3) for
a given control law u, if for any x0 ∈ C(t0), there exists
a unique solution ϕ : [t0, t1] → Rn with ϕ(t0) = x0 and
d
dtϕ(t) = f(ϕ(t)) + g(ϕ(t))u such that ϕ(t) ∈ C(t) for all
t ∈ [t0, t1].

Definition 3 (time-varying control barrier function): Let
C(t) := {x ∈ X ⊂ Rn | h(x, t) ≥ 0} be the 0-superlevel set
of a smooth function h(x, t) : Rn × [t0, t1] → R, then h is
a TV-CBF if there exist an extended class K∞ function α
such that for all (x, t) ∈ X × [t0, t1], the control system in
(3) satisfies

sup
u∈U

[Lfh(x, t) + Lgh(x, t)u] +
∂h(x, t)

∂t
≥ −α(h(x, t)).

(4)
Applying any Lipschitz continuous controller u(x, t) ∈
U(x, t) to (3), U(x, t) = {u ∈ U | Lfh(x, t)+Lgh(x, t)u+
∂h(x,t)

∂t + α(h(x, t)) ≥ 0}, the forward invariance of C(t)
is guaranteed [31, Theorem 1], which enables us to use
the following Quadratic Programming (QP) that minimally
modifies the reference controller u0(x, t):

u∗(x, t) = argmin
u∈U

1

2
∥u−u0(x, t)∥22 subject to Eq. (4). (5)

C. Conic Control Barrier Function

Similarly to the case of Euclidean space, we can define a
CBFs on SO(3) as follows:

Definition 4 (CBF on SO(3)): Consider the 0-superlevel
set C = {R ∈ S ⊂ SO(3) | h(R) ≥ 0} of a smooth function
h(R) : SO(3)→ R, then h is a CBF on SO(3) if there exists
an extended class K∞ function α such that for all R ∈ S
the attitude dynamics Ṙ = R[ω]× satisfies

sup
ω∈Ω

(
ḣ(R)

)
≥ −α (h(R)) (6)

One option for h(R) is conic attitude constraints. Consider
the inequality constraint as follows:

hi(R) := ei
⊤Rei − cos(θi) ≥ 0, (7)

where θi ∈ (0, π/2) determines the size of the cone and
ei = [δi1 δi2 δi3]

⊤, with δij being the Kronecker delta and
i, j ∈ {1, 2, 3}. As illustrated in Fig.2, the transformed axis
Rei is constrained in the conic region determined by ei and
θi. Ibuki et al. [5] proves that for the attitude dynamics, any
Lipschitz continuous control law ω(R) ∈ Ω(R), Ω(R) =

e3

e1

e2

θ3

θ1

θ2

Re3

Re1 Re2

Fig. 2. An illustration of conic constraints.

{
ω ∈ Ω | −ei⊤R[ei]×ω + α(ei

⊤Rei − cos(θi)) ≥ 0
}

will
render the set C forward invariant1.

IV. METHODOLOGY

Our method comprises two phases: an offline phase dedi-
cated to skill and constraint acquisition from demonstrations,
and an online phase focused on the safe execution of these
skills within the regions defined by the constraints. Fig. 3
provides an overview of the method.

During the learning phase, PC-GMM encodes translational
and rotational motions as two stable DSs, extracting time-
varying conic constraints for orientation based on observed
demonstration variability. Specifically, the cone axes align
with the learned DS, with cone angles θ representing orien-
tation variances encoded in a Locally Weighted Regression
(LWR) model. In the execution phase, each iteration adjusts
the command ωexc from the learned DS with human input
uh or perturbed by noise up. The summation u0 serves as
the reference control input for the Conic Control Barrier
Function Quadratic Programming (CCBF-QP), which acts
as a filter that minimally modifies the given input while
guaranteeing forward invariance of the safety set defined
by the time-varying conic constraints. Finally, we obtain the
trajectory to be executed Rexc(t) by discretely integrating
the solution u∗ to the QP.

Reference
DS

LWR
Model

Robot
Cartesian
Impedance
Controller

Executor
DS

Learn
DSs

Expert’s
Demos

Learn Skills & ConstraintsExecute Skills

Human Input/
Perturbation uh/up

u∗u0ωexc

+
+

ωref

Rexc

Rref

Learn Conic
Constraints

CCBF-QP
∫

∫
θ

Fig. 3. Overview of the method. Dark-colored lines indicate values. Light-
colored lines indicate data or functions.

1The property [a]×b = −[b]×a is used to obtain the CCBF condition.



A. Learning from Demonstration

We formulate robot motions (p,R) ∈ R3 × SO(3) as
a control law driven by two separate DSs that encode
a specific behavior. From a machine learning perspective,
estimating the DSs from a set of N reference trajectories
D =

{(
pt,n,Rt,n

)
,
(
ṗt,n,ωt,n

)}Tn,N

t=0,n=1
can be framed as

a regression problem. In this work, we use PC-GMM to learn
the DSs [4]. For translation, we use a first-order DS

ṗ = fp(p), fp : R3 → R3. (8)

For R ∈ SO(3), given the aim of modeling robots’
motion, we assume they follow the rigid body motion [32]

Ṙ = R[ω]×. (9)

The capitalized logarithmic map allows the regression of
rotation trajectories to stay in R3, with tangent vector as
inputs and angular velocity ω as outputs

ω = fR

(
LogRg

(R)
)
, fR : R3 → R3, (10)

where Rg is the rotational goal.
Inspired by PC-GMM [4], we define the regression func-

tion in (10) as

ω =

K∑
k=1

Ak LogRg
(R), (11)

where Ak are positive definite matrices learned from demon-
strations. In order to prove the stability of (11), we consider
the trace Lyapunov candidate V (R) = tr(I −R⊤Rg), that
is widely used in attitude control on SO(3) [33]. The time
derivative of V (R) writes as:

V̇ (R) = −tr(Ṙ⊤
Rg) = −tr([ω]⊤×R

⊤Rg), (12)

where we used the definition of Ṙ in (9). Defining
E = R⊤Rg and recalling the identity tr([ω]⊤×E) =

ω⊤
[
(E−E⊤)

]∨
[33], the derivative of the Lyapunov func-

tion in (12) becomes

V̇ (R) = −ω⊤
[
(E−E⊤)

]∨
= −

K∑
k=1

(
LogRg

(R)
)⊤

Ak

[
(E−E⊤)

]∨
,

(13)

where we used the definition of ω in (11) and the property
A⊤

k = Ak. From the definition of LogRg
(R) in Sec. III-A,

it is easy to verify that V̇ (R) vanishes at the equilibrium,
i.e., V̇ (R) = 0 for R = Rg . For R ̸= Rg , i.e., for E ̸= I,
it holds that

LogRg
(R) =

θ(E)

2 sin(θ(E))

[
(E−E⊤)

]∨
. (14)

By substituting (14) into (13), we obtain that

V̇ (R) = −
K∑

k=1

θ(E)

2 sin(θ(E))

([
(E−E⊤)

]∨)⊤
Ak

[
(E−E⊤)

]∨
.

(15)

Recalling that Ak are positive definite matrices and that
θ(E)

sin(θ(E)) ≥ 0 for −π < θ(E) < π and it vanishes only
at θ(E) = 0 (corresponding to E = I), we conclude the
asymptotic stability of (11).

B. Learn time-varying conic constraints

We derive time-varying conic constraints, denoted as
h(R, t), by independently learning cone axes and cone
angles. We first outline the definition of the conic axes. By
integrating Eq. (9) and Eq. (10) with a given initial point
and goal, we reproduce the reference rotational trajectory
Rref(t). Referring to the axes of the world frame as ew1:3, the
cone axes are straightforwardly established as the axes of the
transformed world frame, denoted as eref1:3(t) := Rref(t)e

w
1:3.

Algorithm 1 outlines the procedure to encode the variance
of orientations as cone angles along demonstrated trajectories
by learning the LWR model [θ1, θ2, θ3]⊤ = fθ(LogRg

(R)).
It begins by computing the minimum distance Dmin between
the initial and goal rotations across all demonstrations. This
distance is then uniformly partitioned to produce the dataset
{di}Mi=0. Subsequently, we resample the time-dependent
demonstrations

{
Rt,n

}Tn,N

t=0,n=1
w.r.t. {di}Mi=0. For each set

of rotational matrices at the same distance, we calculate
the mean and covariance of their tangent vectors. Projecting
the sum of the mean and the covariance eigenvectors back
onto SO(3) yields the mean rotational matrix Rm and three
additional rotational matrices R1:3. The cone angle for each
axis ei of a reference frame is defined as the maximum
cosine angle between the transformed axes Rmei and Rjei.
Finally, we apply LWR to the dataset {di, θi1:3}Mi=0 and obtain
the regression model f(θ). In conclusion, we establish the
time-varying conic constraints as:

hi(R, t) := ewi
⊤R⊤erefi (t)− cos(θi(t)) ≥ 0, i ∈ {1, 2, 3},

(16)
with θi(t) = fθi(∥LogRg

(Rref(t))∥2).

Algorithm 1 LEARN CONE ANGLE

Require:
{
Rt,n

}Tn,N

t=0,n=1

1: Dmin = minNn=1 ∥LogRn
g
(R0,n)∥2

2: di = (Dmin/M) · i for i = 1 : M

3:
{
Ri,n

}M,N

i=0,n=1
← Resample(Slerp(

{
Rt,n

}Tn,N

t=0,n=1
))

4: for i ≤M do
5: m← mean(

{
LogRg

(
Ri,n

)}N

n=1
)

6: V← covariance(
{
LogRg

(
Ri,n

)}N

n=1
)

7: v1:3 ← Eigen Decomposition(V)
8: p1:3 ← v1:3 +m
9: R1:3,Rm ← Exp(p1:3),Exp(m)

10: θi1:3 ← maxj∈{1,2,3} arccos(e
w
1:3

⊤Rj
⊤Rmew1:3)

11: end for
12: fθ ← LWR({di, θi1:3}Mi=0)
13: return fθ



pref(t),Rref(t)

pexc(t),Rexc(t)

θ3(t)

eref
3 (t)

eexc
3 (t)

Fig. 4. An illustration of time-varying conic constraints. The axes of a
rotational matrix Rexc always stay within the cones defined by Rref(t),
which itself evolves according to the reference DS.

C. Constrained execution via CCBF-QP

The execution of skills is guaranteed to satisfy the time-
varying conic constraints in Fig. 4 by solving (17). In Fig.
3, two distinct DSs run simultaneously: (i) the executor
DS, which generates control input for the actively executed
rotational trajectory Rexc(t), and (ii) the reference DS, which
provides the reference rotational trajectory Rref(t) for the
time-varying conic constraints. Their respective axes are
denoted as eexci = Rexce

w
i and erefi = Rrefe

w
i . At each time

step, we compute angular velocities ωref and ωexc using
(10) and determine the cone angle θ with the learned LWR
model fθ. The summation u0 = ωexc+uh+up serves as the
reference control input to the QP, where uh and up denote
human inputs and perturbations. The reference trajectory
follows exactly the learned DS Ṙref = Rref [ωref ]×, while
the execution follows Ṙexc = Rexc[u

∗]×, where u∗ is the
solution to the following QP:

argmin
u∈U

1

2
∥u− u0(Rexc, t)∥22 (CCBF-QP)

s.t. ḣi(Rexc, t) ≥ −α (hi(Rexc, t)) , i ∈ {1, 2, 3}.
(17)

The CCBF condition explicitly writes as

−erefi
⊤Rexc [e

w
i ]× u− eexci

⊤Rref [e
w
i ]× ωref

+
d

dt
cos(θi) + α

(
erefi

⊤eexci − cos(θi)
)
≥ 0.

Notably, the executor DS can be arbitrarily selected since
it will remain confined within the time-varying cones. For
simplicity and more accurate reference trajectory tracking,
we opt for the same executor DS as the reference DS.
However, the reference DS evolving independently of human
input could potentially pose challenges in assisted teleop-
eration, as the human operator may lose control authority
over the execution. To address this, a human operator can
modulate the actual velocity using an additional continuous
input device, such as a foot pedal.

V. EXPERIMENTAL RESULTS

A. Simulation

In simulation, we used orientation trajectories from Rie-
mannian LASA dataset (R-LASA) [10], an extension to
LASA handwriting dataset [2]. We empirically set 5 Gaus-
sian components for learning the translational and 8 for the
rotational DSs. For LWR of cone angles, we opted for a
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Fig. 5. Temporal evolution of cone angles and orientation trajectories
for the L/N/W shapes (from top to bottom). Orientation is depicted
in transformed frames, with square and circle markers denoting initial
orientations and goals. On the left, deep/light solid lines represent the
angles between constrained/unconstrained axes and reference axes, denoted
as θci and θuci respectively. Red, green, and blue correspond to the x-
axis, y-axis, and z-axis. Dashed black lines indicate the learned cone
angles. On the right, the trajectories in solid deep/light blue correspond
to constrained/unconstrained executions, and the dashed black trajectories
represent the reference trajectories.

polynomial degree of 5 and employed 10 components, which
appeared to offer well-balanced fitting accuracy. To avoid
an empty admissible set, we artificially set the minimum
value of the cone angle to 0.01 rad. During execution, we
employed a time step of 0.003 s, starting at the average of the
demonstrations and with the goal set as the identity matrix.
Approximately 1.5 s after the start, we introduced a smooth
step function lasting 0.5 s as the disturbance.

Fig. 5 illustrates the disturbed execution of the L/N/W
shapes from the R-LASA. Firstly, we noticed that both
trajectories with and without the CCBF-QP in all cases con-
verged to the identity matrix, which verified the asymptotic
stability of the DS learned with PC-GMM. However, all the
unconstrained orientation trajectories deviated significantly
from the reference trajectories after being disturbed, partly
due to the inherent convergence behavior. In contrast, the
constrained trajectories remained within the region defined
by the time-varying cones, closely tracking the reference
trajectories. To more clearly showcase the satisfaction of



Fig. 6. Execution of the cutting skill in assisted teleoperation.

constraints, we calculated the normalized average constraint
violation (NACV) for all axes, i.e.

NACV =
1

3T
ΣT

t=0Σ
3
i=1 max{0, (θuc/ci (t)− θi(t))/θi(t)},

where θ
uc/c
i refers to the angles between the actual and

the reference cone axes for unconstrained/constrained runs.
We obtained NACV = 2.033 ± 0.844 for unconstrained
executions, and, as expected, NACV = 0 (no violations)
for executions subject to constraints.

B. Robot Experiment

In this experiment, we focused on learning and executing
a cutting skill in an assisted teleoperation scenario. Cutting
tasks demand continuous orientation adjustments along the
trajectory with particular significance placed on the tilt
angle of the blades, since it determines incision shapes as
illustrated in Fig. 1. In applications such as robotic surgery
for tissue resection, operators may require precise control
over the incision shape by adjusting the blade tilt during
skill execution. Meanwhile, it’s crucial to confine the tilt
angle within a predefined range to ensure safety. Thus, we
imposed constraints on the tilt angle of the blade, which
coincides with the z-axis of the EE frame.

Our hardware setup involved a 7 degrees of freedom
manipulator Franka Research 3 for skill execution and a hap-
tic device lambda.7 for teleoperation. The manipulator was
controlled by a Cartesian impedance controller with a trans-
lational stiffness matrix of diag([1500, 1500, 1500])N/m and
a rotational stiffness matrix of diag([75, 75, 75])Nm/rad. The
damping matrices were set for critical damping.

To capture the cutting skill, We recorded five kinesthetic
demonstrations. The hyperparameters of GMM and LWR
remained the same as in the simulation. The minimum
threshold of cone angle was set to 0.02 rad.
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Fig. 7. Cone angles over time and rotational trajectories of the EE frame
of the robot. On the left, solid lines in deep/light blue represent the angles
between constrained/unconstrained z-axes and reference z-axes, denoted as
θc3 and θuc3 respectively, under human intervention. The black dashed lines
indicate the learned cone angle bounds. On the right, the trajectories in
solid deep/light blue correspond to reproductions w/o CCBF-QP, while the
dashed black trajectories represent the reference trajectories.

In the performance evaluation, we invited six users, each
performing the test twice. The users introduced different
inclinations of the cutting edge, potentially or deliberately
exceeding the learned conic constraints around the z-axis
of the EE frame. Fig. 7 shows the temporal evolution of
cone angles and the rotational trajectories of the EE frame in
two independent runs. We observed that the executions with
CBF consistently fulfilled the learned constraints (the NACV
of the z-axis is NACVz = 0), while unconstrained ones
deviated far from the reference trajectories under excessive
operator inputs (NACVz = 2.218± 1.025).

VI. CONCLUSIONS

In summary, we presented an innovative method for the
safe execution of learned rotation skills by leveraging the
combination of (i) a stable DS on SO(3) and (ii) CCBFs that
guarantee satisfaction of (iii) time-varying conic constraints
extracted from the variability of demonstrations. We showed
in simulation that our approach ensured that the learned DS
converged to the goal, evolved closely to the reference trajec-
tory, and always stayed within the region defined by the conic
constraints. Furthermore, we have showcased the practical
applicability of our approach in an assisted teleoperation
scenario for cutting skills. In our future work, we intend to
enhance the constraint learning method, currently restricted
to trajectories whose distance to the target monotonically
decreases. Moreover, we aim to improve the approach’s
usability by encompassing both translational and rotational
motions based on coupled DSs [34].
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